- -

Damage and spatiotemporal dynamics of the Ngaio flat mite, Brevipalpus ferraguti (Trombidiformes: Tenuipalpidae), with observations on the development of the female insemination system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Damage and spatiotemporal dynamics of the Ngaio flat mite, Brevipalpus ferraguti (Trombidiformes: Tenuipalpidae), with observations on the development of the female insemination system

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escobar-Garcia, Hector Alonso es_ES
dc.contributor.author Ferragut Pérez, Francisco José es_ES
dc.date.accessioned 2022-09-02T18:02:42Z
dc.date.available 2022-09-02T18:02:42Z
dc.date.issued 2022-01 es_ES
dc.identifier.issn 0168-8162 es_ES
dc.identifier.uri http://hdl.handle.net/10251/185165
dc.description.abstract [EN] We studied the Ngaio flat mite, Brevipalpus ferraguti Ochoa & Beard, on Myoporum laetum (Scrophulariaceae), a common introduced plant used as hedgerows in gardens and green areas of the Mediterranean, where the mite causes considerable damage. We first describe the damage, and then the patterns of mite seasonal abundance and spatial distribution. Finally, we address the development of the female insemination system at the population level. Damage occurs on both sides of the leaves, starting with a uniform stippling and bronzing and ending in the leaves drying out and extensive defoliation that coincides with summer. Mite population peaked between June and August, maintained moderate levels in autumn and winter and reached its lowest density in early spring. Active motile immatures and eggs were present throughout the year. Females and motile immature forms were more abundant on the abaxial (lower) leaf surface, but eggs were deposited on both surfaces indistinctly, suggesting that females actively move to the adaxial (upper) surface in summer to oviposit. All the developmental stages were aggregated on the leaves throughout the year regardless of their population density. Our study suggests that a binomial or presenceabsence sampling, examining only the number of females on the abaxial surface, can accurately estimate the total mite density levels. Only 23.5% of females possessed a fully developed spermatheca, whereas in 76.5% of the cases the seminal receptacle was not present or not developed. Females with a complete spermatheca were less abundant in summer. Average temperatures and host plant species affected the occurrence of this reproductive structure. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Experimental and Applied Acarology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ornamental pests es_ES
dc.subject Population biology es_ES
dc.subject Seasonal abundance es_ES
dc.subject Aggregation patterns es_ES
dc.subject Spermatheca es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Damage and spatiotemporal dynamics of the Ngaio flat mite, Brevipalpus ferraguti (Trombidiformes: Tenuipalpidae), with observations on the development of the female insemination system es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10493-021-00670-y es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Escobar-Garcia, HA.; Ferragut Pérez, FJ. (2022). Damage and spatiotemporal dynamics of the Ngaio flat mite, Brevipalpus ferraguti (Trombidiformes: Tenuipalpidae), with observations on the development of the female insemination system. Experimental and Applied Acarology. 86(1):73-90. https://doi.org/10.1007/s10493-021-00670-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10493-021-00670-y es_ES
dc.description.upvformatpinicio 73 es_ES
dc.description.upvformatpfin 90 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 86 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\462866 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references AEMET (2020) Agencia Estatal de Meteorología. Available online: http://www.aemet.es/es/eltiempo/observacion/ultimosdatos?k=val&l=8416Y es_ES
dc.description.references Alberti G, Tassi AD, Kitajima EW (2014) Part 6: Female reproductive system. In: Alberti G, Kitajima EW (eds) Anatomy and fine structure of Brevipalpus mites (Tenuipalpidae)–economically important plant-virus vectors. Schweizerbart Science Publishers, Stuttgart es_ES
dc.description.references Alves JLS, Ferragut F, Mendonça RS, Tassi AD, Navia D (2019) A new species of Brevipalpus (Acari: Tenuipalpidae) from the Azores Islands, with remarks on the B. cuneatus species group. Syst Appl Acarol 24(11):2184–2208. https://doi.org/10.11158/saa.24.11.10 es_ES
dc.description.references Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Ann Rev Entomol 47:817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300 es_ES
dc.description.references Beard JJ, Ochoa R, Bauchan GR, Trice MD, Redford AJ, Walters TW, Mitter C (2012) Flat Mites of the World Edition 2. Identification Technology Program, CPHST, PPQ, APHIS, USDA; Fort Collins, CO. Accessed May 26th 2021. http://idtools.org/id/mites/flatmites/ es_ES
dc.description.references Beard JJ, Ochoa R, Braswell WE, Bauchan GR (2015) Brevipalpus phoenicis (Geijskes) species complex (Acari: Tenuipalpidae) a closer look. Zootaxa 3944:1–67. https://doi.org/10.11646/zootaxa.3944.1.1 es_ES
dc.description.references Childers CC, French JV, Rodrigues JCV (2003) Brevipalpus californicus, B. obovatus, B. phoenicis, and B. lewisi (Acari: Tenuipalpidae): a review of their biology, feeding injury and economic importance. Exp Appl Acarol 30:5–28. https://doi.org/10.1023/B:APPA.0000006543.34042.b4 es_ES
dc.description.references Di Palma A, Tassi AD, Kitajima EW (2020) On some morphological and ultrastructural features of the insemination system in five species of the genus Brevipalpus (Acari: Tenuipalpidae). Exp Appl Acarol 81(4):531–546. https://doi.org/10.1007/s10493-020-00526-x es_ES
dc.description.references EPC (European Parliament and Council) (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Official J L 309:71–86 es_ES
dc.description.references Fuller TC, McClintock EM (1986) Poisonous plants of California. University of California Press, Berkeley, p 384 es_ES
dc.description.references Groot TWM, Janssen A, Pallini A, Breeuwer JAJ (2005) Adaptation in the asexual false spider mite Brevipalpus phoenicis: evidence for frozen niche variation. Exp Appl Acarol 36:165–176. https://doi.org/10.1007/s10493-005-3360-6 es_ES
dc.description.references Haramoto FH (1966) Biology and control of Brevipalpus phoenicis (Geijikes) (Acarina: Tenuipalpidae). PhD Dissertation, University of Hawaii 113 pp es_ES
dc.description.references Helle W, Bolland HR, Heitmans WRB (1980) Chromosomes and types of parthenogenesis in the false spider mites (Acari: Tenuipalpidae). Genetica 54:45–50. https://doi.org/10.1007/BF00122407 es_ES
dc.description.references Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, Berkeley, p 614 es_ES
dc.description.references Krantz GW, Walter DE (2009) Collecting, rearing, and preparing specimens. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 83–94 es_ES
dc.description.references Lea-Cox JD, Syvertsen JP (1996) How nitrogen supply affects growth and nitrogen uptake, use-efficiency, and loss from Citrus seedlings. J Am Soc Hort Sci 121:105–114. https://doi.org/10.21273/JASHS.121.1.105 es_ES
dc.description.references Legaz F, Primo-Millo E, Primo-Yufera E, Gil C, Rubio JL (1982) Nitrogen fertilization in citrus. I. Absorption and distribution of nitrogen in calamondin trees (Citrus mitis Bl.), during flowering, fruit set and initial fruit development periods. Plant Soil 66:339–351. https://doi.org/10.1007/BF02183800 es_ES
dc.description.references Mineiro JLC, Sato ME, Raga A, Arthur V (2008) Population dynamics of phytophagous and predaceous mites on coffee in Brazil, with emphasis on Brevipalpus phoenicis (Acari: Tenuipalpidae). Exp Appl Acarol 44:277–291. https://doi.org/10.1007/s10493-008-9149-7 es_ES
dc.description.references Mohamed SM, Omer EA (2009). Seasonal variations in the volatile oil of Myoporum laetum leaves. Med Aromat Plant Sci Biotechnol (Special issue 1): 50–51. es_ES
dc.description.references Navia D, Mendonça RS, Ferragut F, Miranda LC, Trincado RC, Michaux J, Navajas M (2013) Cryptic diversity in Brevipalpus mites (Tenuipalpidae). Zool Scr 42:406–426. https://doi.org/10.1111/zsc.12013 es_ES
dc.description.references Ochoa R, Aguilar H, Vargas C (1994) Phytophagous mites of Central America: An illustrated guide. CATIE, Serie Técnica, Manual Técnico No. 6, English edition, 234 pp es_ES
dc.description.references Oomen PA (1982) Studies on population dynamics of the scarlet mite, Brevipalpus phoenicis, a pest of tea in Indonesia. Mededelingen Landbouwhogeschool, Wageningen, p 98 es_ES
dc.description.references Petanović R, Kielkiewicz M (2010) Plant–eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part i Exp Appl Acarol 51:61–80. https://doi.org/10.1007/s10493-010-9351-2 es_ES
dc.description.references Raupp MJ, Shrewsbury PM, Herms D (2010) Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol 55:19–38. https://doi.org/10.1146/annurev-ento-112408-085351 es_ES
dc.description.references Razoux-Schultz L (1961) Enkele notities over de oranje mijt, Brevipalpus phoenicis (Geijskes), op thee in Indonesië. Mededelingen Landbouwhogeschool Gent 26:1694–1702 es_ES
dc.description.references Shi A, Tomczyk A (2001) Impact of feeding of eriophyid mite Epitrimerus gibbosus (Nalepa) (Acari: Eriophyoidea) on some biochemical components of blackberry (Rubus spp.). Bull Polish Acad Sci Biol Sci 49(1):41–47 es_ES
dc.description.references SPSS (2011) SPSS Statistics Version 19, USA [Software]. https://www.ibm.com/support/pages/spss-statistics-190-fix-pack-1 (accessed Apr 30 2020) es_ES
dc.description.references StatGraphics (2009) StatGraphics Centurion XVIII Version 18, USA [Software]. http://www.statgraphics.net/descargas/ (accessed Apr 30 2020) es_ES
dc.description.references Sudo M, Osakabe M (2011) Do plant mites commonly prefer the underside of leaves? Exp Appl Acarol 55:25–38. https://doi.org/10.1007/s10493-011-9454-4 es_ES
dc.description.references Tassi AD (2018) Diversidade morfologica e genetica de diferentes especies de Brevipalpus (Acari: Tenuipalpidae) e suas competencias como vetores de virus. PhD Dissertation. Universidade de Sao Paulo/Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, 262 pp es_ES
dc.description.references Tassi AD, Alves JLS, Navia D, Mendonça RS, Kitajima EW (2018) First report of Brevipalpus ferraguti Ochoa & Beard (Tenuipalpidae) in Brazil, and its possible role as vector for some Brevipalpus-transmitted virus. Anais do III Congresso Latinoamericano de Acarologia e VI Simpósio Brasileiro de Acarologia, Pirenópolis, Goiás, Brasil. Available from: http://www.infobibos.com/anais/sibac/6/resumos/ResumoClac3Sibac6_0159.pdf es_ES
dc.description.references Taylor L (1961) Aggregation, variance and the mean. Nature 189:732–735. https://doi.org/10.1038/189732a0 es_ES
dc.description.references Taylor L (1984) Assessing and interpreting the spatial distributions of insect populations. Annu Rev Entomol 29:321–357. https://doi.org/10.1146/annurev.en.29.010184.001541 es_ES
dc.description.references Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482. https://doi.org/10.1126/science.1060411 es_ES
dc.description.references Wilson L, Room PM (1983) Clumping patterns of fruit and arthropods in cotton, with implications for binomial sampling. Environ Entomol 12:50–54. https://doi.org/10.1093/ee/12.1.50 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem