- -

La inversa core-EP y la inversa de grupo débil para matrices rectangulares

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

La inversa core-EP y la inversa de grupo débil para matrices rectangulares

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Ferreyra, David es_ES
dc.contributor.advisor Thome Coppo, Néstor Javier es_ES
dc.contributor.author Orquera, Valentina es_ES
dc.date.accessioned 2022-09-05T12:00:00Z
dc.date.available 2022-09-05T12:00:00Z
dc.date.created 2022-07-18
dc.date.issued 2022-09-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/185227
dc.description.abstract [ES] Durante las primeras décadas del siglo pasado se estudiaron las inversas generalizadas que hoy en día se conocen como inversas generalizadas clásicas. Entre ellas cabe mencionar la inversa de Moore-Penrose (1955) y la inversa de Drazin (1958). Mientras que la inversa de Moore-Penrose se definió originalmente para matrices complejas rectangulares, la inversa de Drazin fue tratada, en un primer momento, únicamente para matrices cuadradas. Más tarde, en 1980, Cline y Greville realizaron la extensión del caso cuadrado al caso rectangular, mediante la consideración de una matriz de ponderación rectangular. Diferentes propiedades, caracterizaciones y aplicaciones fueron obtenidas para estos tipos de inversas generalizadas hasta finales del siglo pasado. En la última década, han aparecido nuevas nociones de inversas generalizadas. La primera de ellas fue la inversa core, introducida en el año 2010 por los autores Baksalary y Trenkler. La misma tuvo una amplia repercusión en la comunidad matemática debido a la sencillez de su definición, a su aplicación en la resolución de algunos sistemas lineales con restricciones que surgen en la teoría de redes eléctricas y también por su conexión con la inversa de Bott- Duffin. Muchos trabajos de investigación han surgido a partir de la inversa core, incluyendo sus extensiones a conjuntos más generales como el álgebra de operadores lineales acotados sobre espacios de Hilbert y/o al ámbito de anillos abstractos. El objetivo principal de esta tesis doctoral es definir y estudiar en profundidad una nueva inversa generalizada para matrices rectangulares, llamada inversa inversa de grupo débil ponderada, la cual extiende al caso rectangular la inversa de grupo débil recientemente definida (para el caso cuadrado) por Wang y Chen. También se considera un amplio estudio de la inversa core-EP ponderada definida por Ferreyra, Levis y Thome en el año 2018, y que extiende al caso rectangular inversa core-EP introducida por Manjunatha-Prasad y Mohana en el año 2014. Para ambas inversas generalizadas se obtienen nuevas propiedades, representaciones, caracterizaciones como así también su relación con otras inversas conocidas en la literatura. Además, se presentan dos algoritmos que permiten realizar un cálculo efectivo de las mismas. es_ES
dc.description.abstract [CA] Durant les primeres dècades del segle passat es van estudiar les inverses generalitzades que hui dia es coneixen com a inverses generalitzades clàssiques. Entre elles cal esmentar la inversa de Moore-Penrose (1955) i la inversa de Drazin (1958). Mentre que la inversa de Moore-Penrose es va definir originalment per a matrius complexes rectangulars, la inversa de Drazin va ser tractada, en un primer moment, únicament per a matrius quadrades. Més tard, en 1980, Cline i Greville van realitzar l'extensió del cas quadrat al cas rectangular, mitjançant la consideració d'una matriu de ponderació rectangular. Diferents propietats, caracteritzacions i aplicacions van ser obtingudes per a aquests tipus d'inverses generalitzades fins a finals del segle passat. En l'última dècada, han aparegut noves nocions d'inverses generalitzades. La primera d'elles va ser la inversa core, introduïda l'any 2010 pels autors Baksalary i Trenkler. La mateixa va tindre una àmplia repercussió en la comunitat matemàtica a causa de la senzillesa de la seua definició, a la seua aplicació en la resolució d'alguns sistemes lineals amb restriccions que sorgeixen en la teoria de xarxes elèctriques i també per la seua connexió amb la inversa de Bott-Duffinn. Molts treballs de recerca han sorgit a partir de la inversa core, incloent les seues extensions a conjunts més generals com l'àlgebra d'operadors lineals delimitats sobre espais de Hilbert i/o a l'àmbit d'anells abstractes. L'objectiu principal d'aquesta tesi doctoral és definir i estudiar en profunditat una nova inversa generalitzada per a matrius rectangulars, anomenada inversa inversa de grup feble ponderada, la qual estén al cas rectangular la inversa de grup feble recentment definida (per al cas quadrat) per Wang i Chen. Tamb é es considera un ampli estudi de la inversa core-EP ponderada definida per Ferreyra, Levis i Thome l'any 2018, i que estén al cas rectangular inversa core-EP introduïda per Manjunatha-Prasad i Mohana l'any 2014. Per a totes dues inverses generalitzades s'obtenen noves propietats, representacions, caracteritzacions com així també la seua relació amb altres inverses conegudes en la literatura. A més, es presenten dos algorismes que permeten realitzar un càlcul efectiu d'aquestes. es_ES
dc.description.abstract [EN] Generalized inverses, known today as Classical Generalized Inverses, were studied during the first decades of the last century. Two important classical generalized inverses are the Moore-Penrose inverse (1955) and the Drazin inverse (1958). The Moore-Penrose inverse was originally defined for complex rectangular matrices. In turn, the Drazin inverse was studied, at first, only for square matrices. It was in 1980 when Cline and Greville extended the case of square matrices to the case of rectangular matrices by considering a weight rectangular matrix. Throughout the entire past century there appeared difierent properties, characterizations and applications of these types of generalized inverses. This last decade gave rise to new notions of generalized inverses. The first of these new notions is known as the core inverse. Core inverses were introduced in 2010 by Baksalary and Trenkler. Their work had a wide repercussion in the mathematical community due to the simplicity of its denition and its application in the solution of some linear systems with restrictions. The core inverse further gain in interest due to their connection to the Bott-Duffin inverse. There is a large body of work on the core inverse, including extensions to more general sets if such as the algebra of bounded linear operators on Hilbert spaces and/or abstract rings. The main goal of this thesis is to define and study in depth a new generalized inverse for rectangular matrices. This new inverse is called weighted weak group inverse (or weighted WG inverse). Weighted WG inverses extend weak group inverse, recently defined for the square case by Wang and Chen, to the rectangular case. We also consider an extensive study of the weighted core-EP inverse. The latter type of inverse was dened by Ferreyra, Levis, and Thome in 2018. This inverse extends the core-EP inverse introduced by Manjunatha- Prasad and Mohana in 2014 to the rectangular case. This thesis presents new properties, representations, characterizations, as well as their relation with other inverses known in the literature are obtained, for weighted WG inverses and weighted core-EP inverse. In addition, the thesis presents two algorithms that allow for an efiective computation weighted WG inverses and weighted core-EP inverse. es_ES
dc.format.extent 112 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Matrices rectangulares es_ES
dc.subject Teoría de matrices es_ES
dc.subject Algebra lineal es_ES
dc.subject Linear algebra es_ES
dc.subject Matrix theory es_ES
dc.subject Rectangular matrices es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title La inversa core-EP y la inversa de grupo débil para matrices rectangulares es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/185227 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Orquera, V. (2022). La inversa core-EP y la inversa de grupo débil para matrices rectangulares [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185227 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\14441 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem