- -

Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andolfo, Guisseppe es_ES
dc.contributor.author Sáez-Sánchez, Cristina es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.contributor.author Ercolano, Maria R. es_ES
dc.date.accessioned 2022-09-05T18:03:06Z
dc.date.available 2022-09-05T18:03:06Z
dc.date.issued 2021-10 es_ES
dc.identifier.issn 0032-0935 es_ES
dc.identifier.uri http://hdl.handle.net/10251/185279
dc.description.abstract [EN] Main conclusion Genome-wide annotation reveals that the gene birth-death process of the Cucurbita R family is associated with a species-specific diversification of TNL and CNL protein classes. The Cucurbitaceae family includes nearly 1000 plant species known universally as cucurbits. Cucurbita genus includes many economically important worldwide crops vulnerable to more than 200 pathogens. Therefore, the identification of pathogen-recognition genes is of utmost importance for this genus. The major class of plant-resistance (R) genes encodes nucleotide-binding site and leucine-rich repeat (NLR) proteins, and is divided into three sub-classes namely, TIR-NB-LRR (TNL), CC-NB-LRR (CNL) and RPW8-NB-LRR (RNL). Although the characterization of the NLR gene family has been carried out in important Cucurbita species, this information is still linked to the availability of sequenced genomes. In this study, we analyzed 40 de novo transcriptomes and 5 genome assemblies, which were explored to investigate the Cucurbita expressed-NLR (eNLR) and NLR repertoires using an ad hoc gene annotation approach. Over 1850 NLR-encoding genes were identified, finely characterized and compared to 96 well-characterized plant R-genes. The maximum likelihood analyses revealed an unusual diversification of CNL/TNL genes and a strong RNL conservation. Indeed, several gene gain and loss events have shaped the Cucurbita NLR family. Finally, to provide a first validation step Cucurbita, eNLRs were explored by real-time PCR analysis. The NLR repertories of the 12 Cucurbita species presented in this paper will be useful to discover novel R-genes. es_ES
dc.description.sponsorship Open access funding provided by Universita degli Studi di Napoli Federico II within the CRUI-CARE Agreement. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Planta es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Diversifying selection es_ES
dc.subject Orthology relations es_ES
dc.subject Phylogeny es_ES
dc.subject R-genes es_ES
dc.subject Transcriptomes es_ES
dc.subject.classification GENETICA es_ES
dc.title Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00425-021-03717-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F078//SELECCION DE VARIEDADES TRADICIONALES Y DESARROLLO DE NUEVAS VARIEDADES DE CUCURBITACEAS ADAPTADAS A LA PRODUCCION ECOLOGICA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTA2017-00061-C03-03//AVANCES EN EL CONTROL DE LOS VIRUS TOLCNDV Y CGMMV EN CUCURBITACEAS MEDIANTE MEJORA GENÉTICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Andolfo, G.; Sáez-Sánchez, C.; Cañizares Sales, J.; Picó Sirvent, MB.; Ercolano, MR. (2021). Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution. Planta. 254(4):1-14. https://doi.org/10.1007/s00425-021-03717-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00425-021-03717-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 254 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 34559316 es_ES
dc.identifier.pmcid PMC8463517 es_ES
dc.relation.pasarela S\455430 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Università degli Studi di Napoli Federico II es_ES
dc.description.references Andolfo G, Ercolano MR (2015) Plant innate immunity multicomponent model. Front Plant Sci 6:987. https://doi.org/10.3389/fpls.2015.00987 es_ES
dc.description.references Andolfo G, Sanseverino W, Rombauts S et al (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237. https://doi.org/10.1111/j.1469-8137.2012.04380.x es_ES
dc.description.references Andolfo G, Ferriello F, Tardella L et al (2014a) Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato Mosaic Virus. PLoS ONE 9(5):e94963. https://doi.org/10.1371/journal.pone.0094963 es_ES
dc.description.references Andolfo G, Jupe F, Witek K et al (2014b) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:120. https://doi.org/10.1186/1471-2229-14-120 es_ES
dc.description.references Andolfo G, Di Donato A, Darrudi R et al (2017) Draft of Zucchini (Cucurbita pepo L.) proteome: a resource for genetic and genomic studies. Front Genet 8:181. https://doi.org/10.3389/fgene.2017.00181 es_ES
dc.description.references Andolfo G, Di Donato A, Chiaiese P et al (2019) Alien domains shaped the modular structure of plant NLR proteins. Genome Biol Evol 11:3466–3477. https://doi.org/10.1093/gbe/evz248 es_ES
dc.description.references Andolfo G, Villano C, Errico A et al (2020) Inferring RPW8-NLRs’s evolution patterns in seed plants: case study in Vitis vinifera. Planta 251:32. https://doi.org/10.1007/s00425-019-03324-x es_ES
dc.description.references Andolfo G, D’agostino N, Frusciante L, Ercolano MR (2021) The tomato interspecific NB-LRR gene arsenal and its impact on breeding strategies. Genes (basel) 12:1–12. https://doi.org/10.3390/genes12020184 es_ES
dc.description.references Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: Discovering and analyzing DNA and protein sequence motifs. Nucl Acids Res 34:369–373. https://doi.org/10.1093/nar/gkl198 es_ES
dc.description.references Barchi L, Pietrella M, Venturini L et al (2019) A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci Rep 9:11769. https://doi.org/10.1038/s41598-019-47985-w es_ES
dc.description.references Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A et al (2019) The genome of Cucurbita argyrosperma (silver-seed gourd) reveals faster rates of protein-coding gene and long noncoding RNA turnover and neofunctionalization within Cucurbita. Mol Plant 12:506–520. https://doi.org/10.1016/j.molp.2018.12.023 es_ES
dc.description.references Barrera-Redondo J, Sánchez-de la Vega G, Aguirre-Liguori JA et al (2021) The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative. Hortic Res 8:109. https://doi.org/10.1038/s41438-021-00544-9 es_ES
dc.description.references Bayer PE, Edwards D, Batley J (2018) Bias in resistance gene prediction due to repeat masking. Nat Plants 4:762–765. https://doi.org/10.1038/s41477-018-0264-0 es_ES
dc.description.references Blanca J, Cañizares J, Roig C et al (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genom 12:104. https://doi.org/10.1186/1471-2164-12-104 es_ES
dc.description.references Bonardi V, Tang S, Stallmann A et al (2017) Correction: Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci USA 108:16463–16468. https://doi.org/10.1073/pnas.1620070114 es_ES
dc.description.references Capuozzo C, Formisano G, Iovieno P et al (2017) Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Mol Breed 37:99. https://doi.org/10.1007/s11032-017-0698-5 es_ES
dc.description.references Castellanos-Morales G, Paredes-Torres LM, Gámez N et al (2018) Historical biogeography and phylogeny of Cucurbita: insights from ancestral area reconstruction and niche evolution. Mol Phylogenet Evol 128:38–54. https://doi.org/10.1016/j.ympev.2018.07.016 es_ES
dc.description.references D’Esposito D, Cappetta E, Andolfo G et al (2019) Deciphering the biological processes underlying tomato biomass production and composition. Plant Physiol Biochem 143:50–60. https://doi.org/10.1016/j.plaphy.2019.08.010 es_ES
dc.description.references De Bie T, Cristianini N, Demuth JP, Hahn MW (2006) CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22:1269–1271. https://doi.org/10.1093/bioinformatics/btl097 es_ES
dc.description.references Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. https://doi.org/10.1093/bioinformatics/btq429 es_ES
dc.description.references Di Donato A, Andolfo G, Ferrarini A et al (2017) Investigation of orthologous pathogen recognition gene-rich regions in solanaceous species. Genome 60:850–859. https://doi.org/10.1139/gen-2016-0217 es_ES
dc.description.references Dogimont C, Chovelon V, Pauquet J et al (2014) The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J 80:993–1004. https://doi.org/10.1111/tpj.12690 es_ES
dc.description.references Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37. https://doi.org/10.1093/nar/gkr367 es_ES
dc.description.references Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877. https://doi.org/10.1073/pnas.1205415109 es_ES
dc.description.references Guo YL, Fitz J, Schneeberger K et al (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769. https://doi.org/10.1104/pp.111.181990 es_ES
dc.description.references Guo J, Xu W, Hu Y et al (2020) Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol Plant 13:1117–1133. https://doi.org/10.1016/j.molp.2020.05.011 es_ES
dc.description.references Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol Biol Evol 30:1987–1997. https://doi.org/10.1093/molbev/mst100 es_ES
dc.description.references Harris KR, Wechter WP, Levi A (2009) Isolation, sequence analysis, and linkage mapping of nucleotide binding site-leucine-rich repeat disease resistance gene analogs in watermelon. J Am Soc Hortic Sci 134:649–657. https://doi.org/10.21273/jashs.134.6.649 es_ES
dc.description.references Jia YX, Yuan Y, Zhang Y et al (2015) Extreme expansion of NBS-encoding genes in Rosaceae. BMC Genet 16:48. https://doi.org/10.1186/s12863-015-0208-x es_ES
dc.description.references Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282. https://doi.org/10.1093/bioinformatics/8.3.275 es_ES
dc.description.references Jones P, Binns D, Chang HY et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. https://doi.org/10.1093/bioinformatics/btu031 es_ES
dc.description.references Joobeur T, King JJ, Nolin SJ et al (2004) The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297. https://doi.org/10.1111/j.1365-313X.2004.02134.x es_ES
dc.description.references Joshi RK, Nayak S (2013) Perspectives of genomic diversification and molecular recombination towards R-gene evolution in plants. Physiol Mol Biol Plants 19:1–9. https://doi.org/10.1007/s12298-012-0138-2 es_ES
dc.description.references Kang YJ, Kim KH, Shim S et al (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139. https://doi.org/10.1186/1471-2229-12-139 es_ES
dc.description.references Kates HR, Soltis PS, Soltis DE (2017) Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol Phylogenet Evol 111:98–109. https://doi.org/10.1016/j.ympev.2017.03.002 es_ES
dc.description.references Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436 es_ES
dc.description.references Khoury CK, Carver D, Kates HR et al (2020) Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits ( Cucurbita L.). Plants People Planet 2:269–283. https://doi.org/10.1002/ppp3.10085 es_ES
dc.description.references Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 es_ES
dc.description.references Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404 es_ES
dc.description.references Lin X, Zhang Y, Kuang H, Chen J (2013) Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genom 14:335. https://doi.org/10.1186/1471-2164-14-335 es_ES
dc.description.references Madeira F, Park YM, Lee J et al (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucl Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268 es_ES
dc.description.references Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucl Acids Res 32:327–331. https://doi.org/10.1093/nar/gkh454 es_ES
dc.description.references McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212. https://doi.org/10.1186/gb-2006-7-4-212 es_ES
dc.description.references Meyers BC, Kozik A, Griego A et al (2003) Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15:809–834. https://doi.org/10.1105/tpc.009308 es_ES
dc.description.references Michelmore RW, Christopoulou M, Caldwell KS (2013) Impacts of resistance gene genetics, function, and evolution on a durable future. Annu Rev Phytopathol 51:291–319. https://doi.org/10.1146/annurev-phyto-082712-102334 es_ES
dc.description.references Montero-Pau J, Blanca J, Bombarely A et al (2018) De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J 16:1161–1171. https://doi.org/10.1111/pbi.12860 es_ES
dc.description.references Moreira X, Abdala-Roberts L, Gols R, Francisco M (2018) Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Sci Rep 8:12678. https://doi.org/10.1038/s41598-018-31041-0 es_ES
dc.description.references Nguyen QM, Iswanto ABB, Son GH, Kim SH (2021) Recent advances in effector-triggered immunity in plants: new pieces in the puzzle create a different paradigm. Int J Mol Sci 22(9):4709. https://doi.org/10.3390/ijms22094709 es_ES
dc.description.references Obrero Á, Die JV, Román B et al (2011) Selection of reference genes for gene expression studies in zucchini (Cucurbita pepo) using qPCR. J Agric Food Chem 59:5402–5411. https://doi.org/10.1021/jf200689r es_ES
dc.description.references Ortiz D, de Guillen K, Cesari S et al (2017) Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell 29:156–168. https://doi.org/10.1105/tpc.16.00435 es_ES
dc.description.references Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A et al (2018) PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucl Acids Res 46:D1197–D1201. https://doi.org/10.1093/nar/gkx1119 es_ES
dc.description.references Peart JR, Mestre P, Lu R et al (2005) NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15:968–973. https://doi.org/10.1016/j.cub.2005.04.053 es_ES
dc.description.references Pond KSL, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. https://doi.org/10.1093/bioinformatics/bti320 es_ES
dc.description.references Renner SS, Schaefer H (2016) Phylogeny and Evolution of the Cucurbitaceae. Genet Genom Cucurbitaceae. https://doi.org/10.1007/7397_2016_14 es_ES
dc.description.references Richly E, Kurth J, Leister D (2002) Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol 19:76–84. https://doi.org/10.1093/oxfordjournals.molbev.a003984 es_ES
dc.description.references Román B, Gómez P, Picó B, Die JV (2020) The NBS-LRR gene class is a small family in Cucurbita pepo. Preprints. https://doi.org/10.20944/preprints202001.0048.v1 es_ES
dc.description.references Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540. https://doi.org/10.1073/pnas.012577299 es_ES
dc.description.references Sarris PF, Cevik V, Dagdas G et al (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14:8. https://doi.org/10.1186/s12915-016-0228-7 es_ES
dc.description.references Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73 es_ES
dc.description.references Shao ZQ, Xue JY, Wu P et al (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170:2095–2109. https://doi.org/10.1104/pp.15.01487 es_ES
dc.description.references Smith BD (1997) The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science (80-) 276:932–934. https://doi.org/10.1126/science.276.5314.932 es_ES
dc.description.references Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165. https://doi.org/10.1016/j.pbi.2016.03.015 es_ES
dc.description.references Sun H, Wu S, Zhang G et al (2017) Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol Plant 10:1293–1306. https://doi.org/10.1016/j.molp.2017.09.003 es_ES
dc.description.references Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035. https://doi.org/10.1073/pnas.0404206101 es_ES
dc.description.references Tian D, Traw MB, Chen JQ et al (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77. https://doi.org/10.1038/nature01588 es_ES
dc.description.references Untergasser A, Nijveen H, Rao X et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucl Acids Res 35:71–74. https://doi.org/10.1093/nar/gkm306 es_ES
dc.description.references Wan H, Yuan W, Ye Q et al (2012) Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. BMC Genom 13:502. https://doi.org/10.1186/1471-2164-13-502 es_ES
dc.description.references Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484 es_ES
dc.description.references Wu C-H, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. Science (80-) 360:1300–1301. https://doi.org/10.1126/science.aat2623 es_ES
dc.description.references Xanthopoulou A, Montero-Pau J, Mellidou I et al (2019) Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Hortic Res 6:94. https://doi.org/10.1038/s41438-019-0176-9 es_ES
dc.description.references Yang S, Feng Z, Zhang X et al (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193. https://doi.org/10.1007/s11103-006-9012-3 es_ES
dc.description.references Zhang N, Zeng L, Shan H, Ma H (2012) Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol 195:923–937. https://doi.org/10.1111/j.1469-8137.2012.04212.x es_ES
dc.description.references Zheng Y, Wu S, Bai Y et al (2019) Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucl Acids Res 47:D1128–D1136. https://doi.org/10.1093/nar/gky944s es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem