- -

What makes trading strategies based on chart pattern recognition profitable?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

What makes trading strategies based on chart pattern recognition profitable?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tsinaslanidis, Prodromos es_ES
dc.contributor.author Guijarro, Francisco es_ES
dc.date.accessioned 2022-09-05T18:03:30Z
dc.date.available 2022-09-05T18:03:30Z
dc.date.issued 2021-08 es_ES
dc.identifier.issn 0266-4720 es_ES
dc.identifier.uri http://hdl.handle.net/10251/185285
dc.description.abstract [EN] Automating chart pattern recognition is a relevant issue addressed by researchers and practitioners when designing a system that considers technical analysis for trading purposes. This article proposes the design of a trading system that takes into account any generic pattern that has been proven to be profitable in the past, without restricting the search to the specific technical patterns reported in the literature, hence the term generic pattern recognition. A fast version of dynamic time warping, the University College Riverside subsequence search suite (called the UCR suite), is employed for the pattern recognition task in an effort to produce trading signals in realistic timescales. This article evaluates the significance of the relation between the system's profitability and (a) the pattern length, (b) the take-profit and stop-loss levels and (c) the performance consensus of past patterns. The trading system is assessed under the mean¿variance perspective by using 560 NYSE stocks. The results obtained by the different parameter configurations are reported, controlling for both data-snooping and transaction costs. On average, the proposed system dominates the market index in the mean¿variance sense. Although transaction costs reduce the profitability of the proposed trading system, 92.5% of the experiments are profitable if the analysis is reduced to the parameter values aligned with the technical analysis es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Expert Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dynamic time warping es_ES
dc.subject Generic pattern recognition es_ES
dc.subject Stock markets es_ES
dc.subject Technical analysis es_ES
dc.subject UCR suite es_ES
dc.subject.classification ECONOMIA FINANCIERA Y CONTABILIDAD es_ES
dc.title What makes trading strategies based on chart pattern recognition profitable? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/exsy.12596 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Tsinaslanidis, P.; Guijarro, F. (2021). What makes trading strategies based on chart pattern recognition profitable?. Expert Systems. 38(5):1-17. https://doi.org/10.1111/exsy.12596 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/exsy.12596 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\412441 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem