- -

Análisis de sinergias entre Isla de Calor Urbana y Olas de Calor mediante imágenes Sentinel 3 sobre la ciudad de Granada

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis de sinergias entre Isla de Calor Urbana y Olas de Calor mediante imágenes Sentinel 3 sobre la ciudad de Granada

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hidalgo-García, David es_ES
dc.contributor.author Arco-Díaz, Julián es_ES
dc.coverage.spatial east=-3.5984368; north=37.1774605; name=C. Gran Vía de Colón, 15, 18001 Granada, Espanya es_ES
dc.date.accessioned 2022-09-06T06:50:26Z
dc.date.available 2022-09-06T06:50:26Z
dc.date.issued 2022-07-26
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/185306
dc.description.abstract [EN] Understanding the synergies between the Urban Heat Island (ICU) phenomenon and one of the extreme climatic events such as heat waves has become one of the great challenges of society that seeks to improve the quality of life. In this research, the Terrestrial Surface Temperature (TST) and the Urban Surface Heat Island (ICUS) have been determined using Sentinel-3 images of the city of Granada (Spain) during the months of July and August of the years 2019 and 2020. The purpose is to determine the possible synergies between both phenomena in an area classified as highly vulnerable to the effects of climate change. Using the Data Panel statistical analysis method, multivariate relationships were obtained during the heat wave periods. The results obtained, in line with previous research, indicate that TST and ICUS are intensified under heat wave conditions (Daytime: TST=2.2 °C and ICUS=0.2 °C; Nighttime: TST=4.4 °C and ICUS= 0.3 °C) and there are relationships between ICUS and wind direction and solar radiation that intensify in periods of heat wave. es_ES
dc.description.abstract [ES] Comprender las sinergias existentes entre el fenómeno de Isla de Calor Urbano (ICU) y uno de los eventos climáticos extremos como son las olas de calor se ha convertido en uno de los grandes retos de la sociedad que persigue la mejora de la calidad de vida. En esta investigación, se ha determinado la Temperatura de la Superficie Terrestre (TST) y la Isla de Calor Urbana de Superficie (ICUS) mediante imágenes Sentinel-3 de la ciudad de Granada (España) durante los meses de julio y agosto de los años 2019 y 2020. El objetivo es el de determinar las posibles sinergias entre ambos fenómenos en una zona calificada como de alta vulnerabilidad a los efectos del cambio climático. Mediante el método de análisis estadístico Datos de Panel se han obtenido las relaciones multivariantes durante los periodos de ola de calor. Los resultados obtenidos en esta investigación y en línea con estudios anteriores, indican que los valores medios de TST y de ICUS se intensifican bajo condiciones de ola de calor en comparación con los periodos sin ola de calor (Diurnas:ΔTST=2,2 °C y ΔICUS=0,2 °C; Nocturnas: ΔTST=4,4 °C y ΔICUS= 0,3 °C). Se reportan relaciones entre la ICUS y la radiación solar y la dirección del viento que se intensifican en periodos de ola de calor. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Surface urban heat island es_ES
dc.subject Heat waves es_ES
dc.subject Sentinel-3 es_ES
dc.subject Land surface temperature es_ES
dc.subject Urban resilience es_ES
dc.subject Remote sensing es_ES
dc.subject Isla de calor urbana de superficie es_ES
dc.subject Olas de calor es_ES
dc.subject Temperatura de la superficie terrestre es_ES
dc.subject Resiliencia urbana es_ES
dc.subject Teledetección es_ES
dc.title Análisis de sinergias entre Isla de Calor Urbana y Olas de Calor mediante imágenes Sentinel 3 sobre la ciudad de Granada es_ES
dc.title.alternative Analysis of synergies between Urban Heat Island and Heat Waves using Sentinel-3 images over the city of Granada es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2022.17128
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hidalgo-García, D.; Arco-Díaz, J. (2022). Análisis de sinergias entre Isla de Calor Urbana y Olas de Calor mediante imágenes Sentinel 3 sobre la ciudad de Granada. Revista de Teledetección. (60):1-15. https://doi.org/10.4995/raet.2022.17128 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2022.17128 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 60 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\17128 es_ES
dc.description.references Alcock, I., White, M.P., Lovell, R., Higgins, S.L., Osborne, N.J., Husk, K., Wheeler, B.W. 2015. What accounts for "England's green and pleasant land"? A panel data analysis of mental health and land cover types in rural England. Landscape and Urban Planning, 142, 38-46. https://doi.org/10.1016/j.landurbplan.2015.05.008 es_ES
dc.description.references An, N., Dou, J., González-Cruz, J.E., Bornstein, R.D., Miao, S., Li, L. 2020. An observational case study of synergies between an intense heat wave and the urban heat island in Beijing. Journal of Applied Meteorology and Climatology, 59(4), 605-620. https://doi.org/10.1175/JAMC-D-19-0125.1 es_ES
dc.description.references Anjos, M., Targino, A.C., Krecl, P., Oukawa, G.Y., Braga, R.F. 2020. Analysis of the urban heat island under different synoptic patterns using local climate zones. Building and Environment, 185(September). https://doi.org/10.1016/j.buildenv.2020.107268 es_ES
dc.description.references Ao, X., Wang, L., Zhi, X., Gu, W., Yang, H., Li, D. 2019. Observed synergies between urban heat islands and heat waves and their controlling factors in Shanghai, China. Journal of Applied Meteorology and Climatology, 58(9), 1955-1972. https://doi.org/10.1175/JAMC-D-19-0073.1 es_ES
dc.description.references Arnfield, A.J. 2003. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1-26. https://doi.org/10.1002/joc.859 es_ES
dc.description.references Avdan, U., Jovanovska, G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016, 1480307. https://doi.org/10.1155/2016/1480307 es_ES
dc.description.references Basara, J.B., Basara, H.G., Illston, B.G., Crawford, K.C. 2010. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Advances in Meteorology, 2010, 1-10. https://doi.org/10.1155/2010/230365 es_ES
dc.description.references Carvalho, D., Martins, H., Marta-Almeida, M., Rocha, A., Borrego, C. 2017. Urban resilience to future urban heat waves under a climate change scenario: A case study for Porto urban area (Portugal). Urban Climate, 19, 1-27. https://doi.org/10.1016/j.uclim.2016.11.005 es_ES
dc.description.references Cotlier, G.I., Jimenez, J.C. 2022. The Extreme Heat Wave over Western North America in 2021: An Assessment by Means of Land Surface Temperature. Remote Sensing, 14(3). https://doi.org/10.3390/rs14030561 es_ES
dc.description.references Chen, Y., Li, X., Zheng, Y., Guan, Y., & Liu, X. (2011). Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005-2008. Landscape and Urban Planning, 102(1), 33-42. https://doi.org/10.1016/j.landurbplan.2011.03.007 es_ES
dc.description.references De Boeck, H.J., Dreesen, F.E., Janssens, I.A., Nijs, I. 2010. Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology, 16(7), 1992-2000. https://doi.org/10.1111/j.1365-2486.2009.02049.x es_ES
dc.description.references de Castro, M., Gallardo, C., Jylha, K., Tuomenvirta, H. 2007. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change, 81(S1), 329-341. https://doi.org/10.1007/s10584-006-9224-1 es_ES
dc.description.references Fang, L., Tian, C. 2020. Construction land quotas as a tool for managing urban expansion. Landscape and Urban Planning, 195(May 2019), 103727. https://doi.org/10.1016/j.landurbplan.2019.103727 es_ES
dc.description.references Founda, D., Pierros, F., Petrakis, M., Zerefos, C. 2015. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmospheric Research, 161-162, 1-13. https://doi.org/10.1016/j.atmosres.2015.03.016 es_ES
dc.description.references Founda, D., Santamouris, M. 2017. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer 2012. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-11407-6 es_ES
dc.description.references Gallo, K., Hale, R., Tarpley, D., Yu, Y. 2011. Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. Journal of Applied Meteorology and Climatology, 50(3), 767-775. https://doi.org/10.1175/2010JAMC2460.1 es_ES
dc.description.references Grumm, R.H. 2011. The central European and russian heat event of July-August 2010. Bulletin of the American Meteorological Society, 92(10), 1285-1296. https://doi.org/10.1175/2011BAMS3174.1 es_ES
dc.description.references House, M., Santamouris, M. 2011. Advances in Building Energy Research Heat Island Research in Europe: The State of Heat Island Research in Europe: The State of the Art. July 2012, 37-41. es_ES
dc.description.references Huang, X., Ding, A., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R., Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F., Pang, N., Wang, H., Tong, D., Qin, W., … He, K. 2021. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, 8(2). https://doi.org/10.1093/nsr/nwaa137 es_ES
dc.description.references Jiang, P., Fu, X., Fan, Y., Klemeš, J., Chen, P., Ma, S., Zhang, W. 2021. Spatial-temporal potential exposure risk analytics and urban sustainability impacts related to COVID-19 mitigation: A perspective from car mobility behaviour. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123673 es_ES
dc.description.references Jiang, S., Lee, X., Wang, J., Wang, K. 2019. Amplified Urban Heat Islands during Heat Wave Periods. Journal of Geophysical Research: Atmospheres, 124(14), 7797-7812. https://doi.org/10.1029/2018JD030230 es_ES
dc.description.references Lai, J., Zhan, W., Huang, F., Voogt, J., Bechtel, B., Allen, M., Peng, S., Hong, F., Liu, Y., Du, P. 2018. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sensing of Environment, 217(August), 203-220. https://doi.org/10.1016/j.rse.2018.08.021 es_ES
dc.description.references Li, D., Bou-Zeid, E. 2013. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology, 52(9), 2051-2064. https://doi.org/10.1175/JAMC-D-13-02.1 es_ES
dc.description.references Li, D., Sun, T., Liu, M., Yang, L., Wang, L., Gao, Z. 2015. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 10(5). https://doi.org/10.1088/1748-9326/10/5/054009 es_ES
dc.description.references Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J. 2011. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249-3263. https://doi.org/10.1016/j.rse.2011.07.008 es_ES
dc.description.references Luo, M., Lau, N.C. 2018. Increasing Heat Stress in Urban Areas of Eastern China: Acceleration by Urbanization. Geophysical Research Letters, 45(23), 13,060-13,069. https://doi.org/10.1029/2018GL080306 es_ES
dc.description.references Masoudi, M., Tan, P.Y., Fadaei, M. 2021. The effects of land use on spatial pattern of urban green spaces and their cooling ability. Urban Climate, 35(November 2020). https://doi.org/10.1016/j.uclim.2020.100743 es_ES
dc.description.references MCGregor, G.R., Felling, M., Wolf, T., Gosling, S. 2007. The social impacts of heat waves. Bristol: Environment Agency. es_ES
dc.description.references Meehl, G.A., Tebaldi, C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 3055686, 994-997. https://doi.org/10.1126/science.1098704 es_ES
dc.description.references Mukherjee, F., Singh, D. 2020. Assessing Land Use-Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Systems and Environment, 4(2), 385-407. https://doi.org/10.1007/s41748-020-00155-9 es_ES
dc.description.references Oke, T.R. 1987. Boundary layer climates. Routledge. es_ES
dc.description.references Oliveira, A., Lopes, A., Niza, S. 2020. Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Climate, 33(May 2019), 100631. https://doi.org/10.1016/j.uclim.2020.100631 es_ES
dc.description.references Poumadère, M., Mays, C., Le Mer, S., Blong, R. 2005. The 2003 heat wave in France: Dangerous climate change here and now. Risk Analysis, 25(6), 1483-1494. https://doi.org/10.1111/j.1539-6924.2005.00694.x es_ES
dc.description.references Ramamurthy, P., Bou-Zeid, E. 2017. Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research, 122(1), 168-178. https://doi.org/10.1002/2016JD025357 es_ES
dc.description.references Robine, J.M., Cheung, S.L.K., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J.P., Herrmann, F.R. 2008. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus - Biologies, 331(2), 171-178. https://doi.org/10.1016/j.crvi.2007.12.001 es_ES
dc.description.references Rongali, G., Keshari, A.K., Gosain, A.K., Khosa, R. 2018. A mono-window algorithm for land surface temperature estimation from landsat 8 thermal infrared sensor data: A case study of the beas river basin, India. Pertanika Journal of Science and Technology, 26(2), 829-840. https://doi.org/10.1007/s41651-018-0021-y es_ES
dc.description.references Saaroni, H., Amorim, J.H., Hiemstra, J.A., Pearlmutter, D. 2018. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 24(October 2017), 94-110. https://doi.org/10.1016/j.uclim.2018.02.001 es_ES
dc.description.references Santamouris, M. 2020. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207. https://doi.org/10.1016/j.enbuild.2019.109482 es_ES
dc.description.references Semenza, J., Rubin, C., Falter, K., Selanikio, J., Flanders, W., Howe, H., Wilhelm, J. 1996. Heat-related deaths during the July 1995 heat wave in Chicago. The New England Journal o f Medicine., 335(2)(July 1995), 86-90. https://doi.org/10.1056/NEJM199607113350203 es_ES
dc.description.references Sobrino, J.A., Irakulis, I. 2020. A methodology for comparing the surface urban heat Island in selected urban agglomerations around the world from Sentinel-3 SLSTR data. Remote Sensing, 12(12), 1-31. https://doi.org/10.3390/rs12122052 es_ES
dc.description.references Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Ruescas, A.B., Danne, O., Brockmann, C., Ghent, D., Remedios, J., North, P., Merchant, C., Berger, M., Mathieu, P.P., Göttsche, F.M. 2016. Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data. Remote Sensing of Environment, 179, 149-161. https://doi.org/10.1016/j.rse.2016.03.035 es_ES
dc.description.references Sobrino, J.A., Oltra-Carrió, R., Sòria, G., JiménezMuñoz, J.C., Franch, B., Hidalgo, V., Mattar, C., Julien, Y., Cuenca, J., Romaguera, M., Gómez, J.A., de Miguel, E., Bianchi, R., & Paganini, M. 2013. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. International Journal of Remote Sensing, 34(9-10), 3177-3192. https://doi.org/10.1080/01431161.2012.716548 es_ES
dc.description.references Song, J., Chen, W., Zhang, J., Huang, K., Hou, B., Prishchepov, A.V. 2020. Effects of building density on land surface temperature in China: Spatial patterns and determinants. Landscape and Urban Planning, 198(March), 103794. https://doi.org/10.1016/j.landurbplan.2020.103794 es_ES
dc.description.references Stewart, I.D., Oke, T.R. 2012. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1 es_ES
dc.description.references Tewari, M., Yang, J., Kusaka, H., Salamanca, F., Watson, C., Treinish, L. (2019). Interaction of urban heat islands and heat waves under current and future climate conditions and their mitigation using green and cool roofs in New York City and Phoenix, Arizona. Environmental Research Letters, 14(3). https://doi.org/10.1088/1748-9326/aaf431 es_ES
dc.description.references United Nations Organization. 2021 June ends with exceptional heat. Available from: https://public.wmo.int/en/media/news/june-ends-exceptional-heat es_ES
dc.description.references Valor, E., Meneu, V., Caselles, V. 2001. Daily air temperature and electricity load in Spain. Journal of Applied Meteorology, 40(8), 1413-1421. https://doi.org/10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2 es_ES
dc.description.references van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B.G., Elbers, J.A., van Driel, B.L., Holtslag, A.A.M. 2015. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 83, 91-103. https://doi.org/10.1016/j.buildenv.2014.08.029 es_ES
dc.description.references Wang, K., Jiang, S., Wang, J., Zhou, C., Wang, X., Lee, X. 2017. Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. Journal Geophysical Research Atmospheric., 122(4449), 2131-2154. https://doi.org/10.1002/ 2016JD025304 es_ES
dc.description.references Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., La Rosa, D. 2019. Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694. https://doi.org/10.1016/j.scitotenv.2019.133742 es_ES
dc.description.references Xia, J., Tu, K., Yan, Z., Qi, Y. 2016. The super-heat wave in eastern China during July-August 2013: A perspective of climate change. International Journal of Climatology, 36(3), 1291-1298. https://doi.org/10.1002/joc.4424 es_ES
dc.description.references Yang, C., Wang, R., Zhang, S., Ji, C., Fu, X. 2019. Characterizing the hourly variation of urban heat islands in a snowy climate city during summer. International Journal of Environmental Research and Public Health, 16(14). https://doi.org/10.3390/ijerph16142467 es_ES
dc.description.references Yang, C., Yan, F., Zhang, S. (2020a). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265(March), 110563. https://doi.org/10.1016/j.jenvman.2020.110563 es_ES
dc.description.references Yang, J., Zhou, J., Göttsche, F.-M., Long, Z., Ma, J., Luo, R. (2020b). Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. International Journal of Applied Earth Observation and Geoinformation, 91(April), 102136. https://doi.org/10.1016/j.jag.2020.102136 es_ES
dc.description.references Zhao, L., Lee, X., Smith, R.B., Oleson, K. (2014). Strong contributions of local background climate to urban heat islands. Nature, 511(7508), 216-219. https://doi.org/10.1038/nature13462 es_ES
dc.description.references Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J. W., Ebi, K. L., Bou-Zeid, E., Guan, K., Liu, X. (2018). Interactions between urban heat islands and heat waves. Environmental Research Letters, 13(3). https://doi.org/10.1088/1748-9326/aa9f73 es_ES
dc.description.references Zhou, D., Zhao, S., Zhang, L., Sun, G., Liu, Y. (2015). The footprint of urban heat island effect in China. Scientific Reports, 5, 2-12. https://doi.org/10.1038/srep11160 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem