- -

Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rajngewerc, Mariela es_ES
dc.contributor.author Grimson, Rafael es_ES
dc.contributor.author Bali, Lucas es_ES
dc.contributor.author Minotti, Priscilla es_ES
dc.contributor.author Kandus, Patricia es_ES
dc.coverage.spatial east=-60.7213894; north=-32.279833; name=Río Paraná, Argentina es_ES
dc.date.accessioned 2022-09-06T07:03:31Z
dc.date.available 2022-09-06T07:03:31Z
dc.date.issued 2022-07-26
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/185307
dc.description.abstract [EN] With the launch of the Sentinel-1 mission, for the first time, multitemporal and dual-polarization C-band SAR data with a short revisit time is freely available. How can we use this data to generate accurate vegetation cover maps on a local scale? Our main objective was to assess the use of multitemporal C-Band Sentinel-1 data to generate wetland vegetation maps. We considered a portion of the Lower Delta of the Paraná River wetland (Argentina). Seventy-four images were acquired and 90 datasets were created with them, each one addressing a combination of seasons (spring, autumn, winter, summer, complete set), polarization (VV, HV, both), and texture measures (included or not). For each dataset, a Random Forest classifier was trained. Then, the kappa index values (k) obtained by the 90 classifications made were compared. Considering the datasets formed by the intensity values, for the winter dates the achieved kappa index values (k) were higher than 0.8, while all summer datasets achieved k up to 0.76. Including feature textures based on the GLCM showed improvements in the classifications: for the summer datasets, the k improvements were between 9% and 22% and for winter datasets improvements were up to 15%. Our results suggest that for the analyzed context, winter is the most informative season. Moreover, for dates associated with high biomass, the textures provide complementary information. es_ES
dc.description.abstract [ES] Con el lanzamiento de la misión Sentinel-1, por primera vez, datos SAR de banda C multitemporales y de polarización dual, con un tiempo de revisión corto, están disponibles de forma gratuita. ¿Cómo podemos utilizar estos datos para generar mapas precisos de cobertura vegetal a escala local? Nuestro principal objetivo fue evaluar el uso de datos multitemporales de banda C Sentinel-1 para generar mapas de vegetación en humedales. Consideramos una porción del humedal del Bajo Delta del Río Paraná (Argentina). Utilizamos setenta y cuatro imágenes y creamos noventa conjuntos de datos distintos con ellas, cada uno abordando una combinación de estaciones (primavera, otoño, invierno, verano, conjunto completo), polarización (VV, HV, ambas) y medidas de textura (incluidas o no). Para cada conjunto de datos, se entrenó un clasificador Random Forest. Luego, se compararon los valores de índice kappa (k) obtenidos por las 90 clasificaciones realizadas. Teniendo en cuenta los conjuntos de datos formados por los valores de intensidad de la señal del radar, para las fechas de invierno los valores k obtenidos fueron superiores a 0,8, mientras que los conjuntos de datos de verano obtuvieron k menores a 0,76. La inclusión de los atributos de texturas basados en las matrices de GLCM mostraron mejoras en las clasificaciones: para los conjuntos de datos de verano, las mejoras de k estuvieron entre un 9% y un 22% y para los de invierno, las mejoras fueron de hasta un 15%. Nuestros resultados sugieren que para el contexto analizado, el invierno es la temporada más informativa. Además, para las fechas asociadas con alta biomasa, las texturas proporcionan información complementaria. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Grey level co-occurrence matrix es_ES
dc.subject Synthetic Aperture Radar es_ES
dc.subject Vegetation cover es_ES
dc.subject Land cover es_ES
dc.subject Classification es_ES
dc.subject Matriz de co-ocurrencia de nivel de gris es_ES
dc.subject Radar de apertura sintética es_ES
dc.subject Cobertura vegetal es_ES
dc.subject Cobertura terrestre es_ES
dc.subject Clasificación es_ES
dc.title Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina es_ES
dc.title.alternative Clasificación de coberturas en humedales utilizando datos de Sentinel-1 (Banda C): un caso de estudio en el delta del río Paraná, Argentina es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2022.16915
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rajngewerc, M.; Grimson, R.; Bali, L.; Minotti, P.; Kandus, P. (2022). Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina. Revista de Teledetección. (60):29-46. https://doi.org/10.4995/raet.2022.16915 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2022.16915 es_ES
dc.description.upvformatpinicio 29 es_ES
dc.description.upvformatpfin 46 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 60 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\16915 es_ES
dc.description.references Arsen, A., Crétaux, J. F. , Berge-Nguyen, M., del Rio, R. A., 2013. Remote Sensing-Derived Bathymetry of Lake Poopó. Remote Sensing, 6(1),407-20. https://doi.org/10.3390/rs6010407 es_ES
dc.description.references Arzandeh, Sepideh, and Jinfei Wang, 2002. Texture Evaluation of RADARSAT Imagery for Wetland Mapping. Canadian Journal of Remote Sensing, 28(5), 653-66. https://doi.org/10.5589/m02-061 es_ES
dc.description.references Ball, J. E., Anderson, D. T., Chan, C.S., 2017. Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges for the Community. Journal of Applied Remote Sensing, 11(4), 1-54. https://doi.org/10.1117/1.JRS.11.042609 es_ES
dc.description.references Belgiu, M., Drăguţ, L., 2016. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 es_ES
dc.description.references Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., 2015. TerraSAR-X Dual-Pol Time-Series for Mapping of Wetland Vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 107, 90-98. https://doi.org/10.1016/j.isprsjprs.2015.05.001 es_ES
dc.description.references Bourgeau-Chavez, L., Endres, S., Battaglia, M., Miller, M.E., Banda, E., Laubach, Z., Phyllis Higman, Chow-Fraser, P., Marcaccio, J., 2015. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery. Remote Sensing, 7(7), 8655-82. https://doi.org/10.3390/rs70708655 es_ES
dc.description.references Breiman, L., 2001. Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 es_ES
dc.description.references Brisco, B., Kapfer, M., Hirose, T., Tedford, B., Liu, J., 2011. Evaluation of C-Band Polarization Diversity and Polarimetry for Wetland Mapping. Canadian Journal of Remote Sensing, 37(1), 82-92. https://doi.org/10.5589/m11-017 es_ES
dc.description.references Caballero, G. R., Platzeck, G., Pezzola, A., Casella, A., Winschel, C., Silva, S. S., Ludueña, E., Pasqualotto, N., Delegido, J., 2020. Assessment of Multi-Date Sentinel-1 Polarizations and GLCM Texture Features Capacity for Onion and Sunflower Classification in an Irrigated Valley: An Object Level Approach. Agronomy, 10(6), 845. https://doi.org/10.3390/agronomy10060845 es_ES
dc.description.references Congalton, R. G., Green, K., 2005. Assessing the Accuracy of Remotely Sensed Data Principles and Practices. Florida: Taylor & Francis. es_ES
dc.description.references Dabboor, M., Brisco, B., 2018. Wetland Monitoring and Mapping Using Synthetic Aperture Radar, Wetlands Management. Assessing Risk and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.80224 es_ES
dc.description.references ESA Sentinel Application Platform. 2019. SNAP. Version 6. http://step.esa.int es_ES
dc.description.references Filipponi, F., 2019. Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ECRS-3-06201 es_ES
dc.description.references Gallant, A. L., 2015. The Challenges of Remote Monitoring of Wetlands. Remote Sensing, 7(8), 10938-50. https://doi.org/10.3390/rs70810938 es_ES
dc.description.references Gong, P., Marceau, D. J., Howarth, P. J., 1992. A Comparison of Spatial Feature Extraction Algorithms for Land-Use Classification with SPOT HRV Data, 40(2), 137-151. https://doi.org/10.1016/0034-4257(92)90011-8 es_ES
dc.description.references Grimson, R., Morandeira, N.S., Gayol, M. P., Kandus, P., 2019. Freshwater Marsh Classification in the Lower Paraná River Floodplain: An Object-Based Approach on Multitemporal X-Band COSMO-SkyMed Data. Journal of Applied Remote Sensing, 13(1), 1-14. https://doi.org/10.1117/1.JRS.13.014531 es_ES
dc.description.references Grings, F. M., Ferrazzoli, P., Jacobo-Berlles, J. C., Karszenbaum, H., Tiffenberg, J., Pratolongo, P., Kandus, P., 2006. Monitoring Flood Condition in Marshes Using EM Models and Envisat ASAR Observations. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 936-42. https://doi.org/10.1109/TGRS.2005.863482 es_ES
dc.description.references Hall-Beyer, M., 2017. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. International Journal of Remote Sensing, 38(5), 1312-38. https://doi.org/10.1080/01431161.2016.1278314 es_ES
dc.description.references Haralick, R. M., 1979. Statistical and Structural Approaches to Texture. Proceedings of the IEEE, 67(5), 786-804. https://doi.org/10.1109/PROC.1979.11328 es_ES
dc.description.references Hess, L. L., Melack, J. M., Novo, E. M. L. M., Barbosa, C. C. F., Gastil, M., 2003. Dual-Season Mapping of Wetland Inundation and Vegetation for the Central Amazon Basin. Remote Sensing of Environment, 87(4), 404-28. https://doi.org/10.1016/j.rse.2003.04.001 es_ES
dc.description.references Huang, C., L. S. D., Townshend, J. R. G., 2002. An Assessment of Support Vector Machines for Land Cover Classification. International Journal of Remote Sensing, 23(4), 725-49. https://doi.org/10.1080/01431160110040323 es_ES
dc.description.references James, G., Witten, D., Hastie, T., Tibshirani, R., 2021. An Introduction to Statistical Learning with Applications in R Second Edition. New York: Springer. https://doi.org/10.1007/978-1-0716-1418-1 es_ES
dc.description.references Kandus, P., Malvárez, A.I. 2004. Vegetation Patterns and Change Analysis in the Lower Delta Islands of the Paraná River (Argentina). Wetlands, 24(3), 620-632. https://doi.org/10.1672/0277-5212(2004)024[0620:VPACAI]2.0.CO;2 es_ES
dc.description.references Kandus, P., Karszenbaum, H., Frulla, L. 1999. Land Cover Classification System for the Lower Delta of the Paraná River (Argentina): Its Relationship with Landsat Thematic Mapper Spectral Classes. Journal of Coastal Research, 15(4), 909-926. es_ES
dc.description.references Kandus, P., Karszenbaum, H., Pultz, T., Parmuchi, G., Bava, J. 2001. Influence of Flood Conditions and Vegetation Status on the Radar Backscatter of Wetland Ecosystems. Canadian Journal of Remote Sensing, 27, 651-662. https://doi.org/10.1080/07038992.2001.10854907 es_ES
dc.description.references Kandus, P., Malvárez, A.I., Madanes, N. 2003. Estudio de Las Comunidades de Plantas Herbáceas de Las Islas Bonaerenses Del Bajo Delta Del Río Paraná (Argentina). Darwiniana, 41(1-4), 1-16. es_ES
dc.description.references Kandus, P., Quintana, R.D., Bó, R.F. 2006. Patrones de Paisaje y Biodiversidad Del Bajo Delta Del Río Paraná. Mapa de Ambientes. Buenos Aires: Wetlands International. es_ES
dc.description.references Krishna, G.B., Mittal, V. 2018. Land Cover Classification of Full Polarimetric PALSAR Images using Decision Tree based on Intensity and Texture Statistical Features. International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), 2018, pp. 739-744. https://doi.org/10.1109/ICRIEECE44171.2018.9009289 es_ES
dc.description.references Kupidura, P., 2019. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery. Remote Sensing, 11(10), 1233. https://doi.org/10.3390/rs11101233 es_ES
dc.description.references Kurvonen, L., Pulliainen, J., Hallikainen, M., 1999. Retrieval of Biomass in Boreal Forests from Multitemporal ERS-1 and JERS-1 SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 198-205. https://doi.org/10.1109/36.739154 es_ES
dc.description.references Larocque, A., Leblon, B., Woodward, R., Bourgeau-Chavez, L., 2020. Wetland Mapping in New Brunswick, Canada with Landsat5-Tm, Alos-Palsar, and Radarsat-2 Imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5, 301-308. https://doi.org/10.5194/isprs-annals-V-3-2020-301-2020 es_ES
dc.description.references LaRocque, A., Phiri, C., Leblon, B., Pirotti, F., Connor, K., Hanson, A., 2020. Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR Data in Southern New Brunswick, Canada. Remote Sensing, 12(13), 2095. https://doi.org/10.3390/rs12132095 es_ES
dc.description.references Lehner, B., Döll, P., 2004. Development and Validation of a Global Database of Lakes, Reservoirs and Wetlands. Journal of Hydrology, 296(1-4), 1-22. https://doi.org/10.1016/j.jhydrol.2004.03.028 es_ES
dc.description.references Lin K-F, Perissin D. 2018. Single-Polarized SAR Classification Based on a Multi-Temporal Image Stack. Remote Sensing, 10(7), 1087. https://doi.org/10.3390/rs10071087 es_ES
dc.description.references Lloyd, C. D., Berberoglu, S., Curran, P. J., Atkinson, P. M., 2004. A Comparison of Texture Measures for the Per-Field Classification of Mediterranean Land Cover. International Journal of Remote Sensing, 25(19), 3943-65. https://doi.org/10.1080/0143116042000192321 es_ES
dc.description.references Lu, D., Weng, Q., 2007. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. International Journal of Remote Sensing, 28(5), 823-70. https://doi.org/10.1080/01431160600746456 es_ES
dc.description.references Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., Gill, E., DeLancey, E.R, Bourgeau-Chavez, L., 2020. Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Canadian Journal of Remote Sensing, 46(1), 15-33. https://doi.org/10.1080/07038992.2019.1711366 es_ES
dc.description.references Marti-Cardona, B., Lopez-Martinez, C., Dolz-Ripolles, J., Bladè-Castellet, E., 2010. ASAR Polarimetric, Multi-Incidence Angle and Multitemporal Characterization of Doñana Wetlands for Flood Extent Monitoring. Remote Sensing of Environment, 114(11), 2802-15. https://doi.org/10.1016/j.rse.2010.06.015 es_ES
dc.description.references McNemar, Quinn. 1947. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika, 12(2). https://doi.org/10.1007/BF02295996 es_ES
dc.description.references Meyer, F. J., 2019. Spaceborne Synthetic Aperture Radar"¯: Principles , Data Access , and Basic Processing Techniques. in SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. NASA. es_ES
dc.description.references Mishra, V. N., Prasad, R., Rai, P. K., Vishwakarma, A. K., Arora, A., 2019. Performance Evaluation of Textural Features in Improving Land Use/Land Cover Classification Accuracy of Heterogeneous Landscape Using Multi-Sensor Remote Sensing Data. Earth Science Informatics, 12(1), 71-86. https://doi.org/10.1007/s12145-018-0369-z es_ES
dc.description.references Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., Motagh, M., 2018. Multi-Temporal, Multi-Frequency, and Multi-Polarization Coherence and SAR Backscatter Analysis of Wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 78-93. https://doi.org/10.1016/j.isprsjprs.2018.05.009 es_ES
dc.description.references Morandeira, N.S., Grimson, R., Kandus, P. 2016. Assessment of SAR speckle filters in the context of object-based image analysis. Remote Sensing Letters, 7(2), 150-159. https://doi.org/10.1080/2150704X.2015.1117153 es_ES
dc.description.references Morandeira, N.S., Barber, M.E., Grings, F.M., Ahern, F., Kandus, P., Brisco, B. 2021. Response of MultiIncidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina. Remote Sensing, 13(13), 2518. https://doi.org/10.3390/rs13132518 es_ES
dc.description.references Mueller, M. M., Dubois, C., Jagdhuber, T., Pathe, C., Schmullius, C., 2021. Investigation of Sentinel-1 time series for sensitivity to fern vegetation in an european temperate forest. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2021, 127-34. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021 es_ES
dc.description.references Numbisi, F. N., Van Coillie, F., De Wulf, R., 2018. Multi-Date Sentinel1 SAR Image Textures Discriminate Perennial Agroforests in a Tropical Forest-Savannah Transition Landscape. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42, 339-346. https://doi.org/10.5194/isprs-archives-XLII-1-339-2018 es_ES
dc.description.references Numbisi, F. N., Van Coillie, F., De Wulf, R., 2019. Delineation of Cocoa Agroforests Using Multiseason Sentinel-1 SAR Images: A Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping. ISPRS International Journal of Geo-Information, 8(4), 179. https://doi.org/10.3390/ijgi8040179 es_ES
dc.description.references Numbisi, F. N., Van Coillie, F., 2020. Does Sentinel-1A Backscatter Capture the Spatial Variability in Canopy Gaps of Tropical Agroforests? A Proof-of-Concept in Cocoa Landscapes in Cameroon. Remote Sensing, 12(24), 1-29. https://doi.org/10.3390/rs12244163 es_ES
dc.description.references Nyoungui, A. N., E. Tonye, Akono, A., 2002. Evaluation of Speckle Filtering and Texture Analysis Methods for Land Cover Classification from SAR Images. International Journal of Remote Sensing, 23(9), 1895-1925. https://doi.org/10.1080/01431160110036157 es_ES
dc.description.references Oliver, C., Quegan. S., 2004. Understanding Synthetic Aperture Radar Images. Raleigh: SciTech. es_ES
dc.description.references Ozesmi, S.L., Bauer, M.E. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10, 381-402. https://doi.org/10.1023/A:1020908432489 es_ES
dc.description.references Otukei, J.R., Blaschke, T. 2010. Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms. International Journal of Applied Earth Observation and Geoinformation, 12(1), S27-S31. https://doi.org/10.1016/j.jag.2009.11.002 es_ES
dc.description.references Pal, M., 2005. Random Forest Classifier for Remote Sensing Classification. International Journal of Remote Sensing, 26(1), 217-22. https://doi.org/10.1080/01431160412331269698 es_ES
dc.description.references Panuju D.R., Paull, D.J., Trisasongko, B.H. 2019. Combining Binary and Post-Classification Change Analysis of Augmented ALOS Backscatter for Identifying Subtle Land Cover Changes. Remote Sensing, 11(1), 100. https://doi.org/10.3390/rs11010100 es_ES
dc.description.references Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchescay, E., 2011. Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2850-2830. es_ES
dc.description.references Planet Team. 2017. Planet Application Program Interface: In Space for Life on Earth. es_ES
dc.description.references Pulella, A., Sica, F., Rizzoli, P., 2020. Monthly Deforestation Monitoring with Sentinel-1 Multi-Temporal Signatures and InSAR Coherences. Revista de Teledetección, 0(56), 1-22. https://doi.org/10.4995/raet.2020.14308 es_ES
dc.description.references Reid, W., Mooney, H.,Cropper, A., Capistrano, D., Carpenter, S., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A., Hassan, R., Kasperson, R., Leemans, R., May, R., Mcmichael, A., Pingali, P., Samper, C., Scholes, R., Watson, R., Zakri, A. H. Zurek, M., 2005. Millenium Ecosystem Assessment Synthesis Report. es_ES
dc.description.references Salvia, M., Grings, F., Karszenbaum, H., Ferrazzoli, P., Kandus, P., Soldano, A., Guerriero, L., 2008. Monitoring Inundation Dynamics in Parana River, Argentina, by C and L Band SAR. International Geoscience and Remote Sensing Symposium (IGARSS), 1, 102-105. es_ES
dc.description.references https://doi.org/10.1109/IGARSS.2008.4778803 es_ES
dc.description.references Salvia, M. M., Karszenbaum, H., Kandus, P., Grings, F. M., 2009. Datos Satelitales Ópticos y de Radar Para El Mapeo de Ambientes En Macrosistemas de Humedal. Revista de Teledetección, 31, 35-51. es_ES
dc.description.references Sivasankar, T., Kumar, D., Srivastava, H. S., Patel, P., 2018. Advances in Radar Remote Sensing of Agricultural Crops: A Review. International Journal on Advanced Science, Engineering and Information Technology, 8(4), 1126-37. https://doi.org/10.18517/ijaseit.8.4.5797 es_ES
dc.description.references Treitz, P. M., Howarth, P. J. , Filho, O. R., Soulis, E. D., 2000. Agricultural Crop Classification Using SAR Tone and Texture Statistics. Canadian Journal of Remote Sensing, 26(1), 18-29. https://doi.org/10.1080/07038992.2000.10874751 es_ES
dc.description.references Tsyganskaya, V., Martinis, S., Marzahn, P, Ludwig, R., 2018. Detection of Temporary Flooded Vegetation Using Sentinel-1 Time Series Data. Remote Sensing, 10(8), 1286. https://doi.org/10.3390/rs10081286 es_ES
dc.description.references Vanama, V. S. K., Mandal, D., Rao., Y. S., 2020. GEE4FLOOD: Rapid Mapping of Flood Areas Using Temporal Sentinel-1 SAR Images with Google Earth Engine Cloud Platform. Journal of Applied Remote Sensing, 14(3), 1-23. https://doi.org/10.1117/1.JRS.14.034505 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem