Mostrar el registro sencillo del ítem
dc.contributor.author | Rajngewerc, Mariela | es_ES |
dc.contributor.author | Grimson, Rafael | es_ES |
dc.contributor.author | Bali, Lucas | es_ES |
dc.contributor.author | Minotti, Priscilla | es_ES |
dc.contributor.author | Kandus, Patricia | es_ES |
dc.coverage.spatial | east=-60.7213894; north=-32.279833; name=Río Paraná, Argentina | es_ES |
dc.date.accessioned | 2022-09-06T07:03:31Z | |
dc.date.available | 2022-09-06T07:03:31Z | |
dc.date.issued | 2022-07-26 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/185307 | |
dc.description.abstract | [EN] With the launch of the Sentinel-1 mission, for the first time, multitemporal and dual-polarization C-band SAR data with a short revisit time is freely available. How can we use this data to generate accurate vegetation cover maps on a local scale? Our main objective was to assess the use of multitemporal C-Band Sentinel-1 data to generate wetland vegetation maps. We considered a portion of the Lower Delta of the Paraná River wetland (Argentina). Seventy-four images were acquired and 90 datasets were created with them, each one addressing a combination of seasons (spring, autumn, winter, summer, complete set), polarization (VV, HV, both), and texture measures (included or not). For each dataset, a Random Forest classifier was trained. Then, the kappa index values (k) obtained by the 90 classifications made were compared. Considering the datasets formed by the intensity values, for the winter dates the achieved kappa index values (k) were higher than 0.8, while all summer datasets achieved k up to 0.76. Including feature textures based on the GLCM showed improvements in the classifications: for the summer datasets, the k improvements were between 9% and 22% and for winter datasets improvements were up to 15%. Our results suggest that for the analyzed context, winter is the most informative season. Moreover, for dates associated with high biomass, the textures provide complementary information. | es_ES |
dc.description.abstract | [ES] Con el lanzamiento de la misión Sentinel-1, por primera vez, datos SAR de banda C multitemporales y de polarización dual, con un tiempo de revisión corto, están disponibles de forma gratuita. ¿Cómo podemos utilizar estos datos para generar mapas precisos de cobertura vegetal a escala local? Nuestro principal objetivo fue evaluar el uso de datos multitemporales de banda C Sentinel-1 para generar mapas de vegetación en humedales. Consideramos una porción del humedal del Bajo Delta del Río Paraná (Argentina). Utilizamos setenta y cuatro imágenes y creamos noventa conjuntos de datos distintos con ellas, cada uno abordando una combinación de estaciones (primavera, otoño, invierno, verano, conjunto completo), polarización (VV, HV, ambas) y medidas de textura (incluidas o no). Para cada conjunto de datos, se entrenó un clasificador Random Forest. Luego, se compararon los valores de índice kappa (k) obtenidos por las 90 clasificaciones realizadas. Teniendo en cuenta los conjuntos de datos formados por los valores de intensidad de la señal del radar, para las fechas de invierno los valores k obtenidos fueron superiores a 0,8, mientras que los conjuntos de datos de verano obtuvieron k menores a 0,76. La inclusión de los atributos de texturas basados en las matrices de GLCM mostraron mejoras en las clasificaciones: para los conjuntos de datos de verano, las mejoras de k estuvieron entre un 9% y un 22% y para los de invierno, las mejoras fueron de hasta un 15%. Nuestros resultados sugieren que para el contexto analizado, el invierno es la temporada más informativa. Además, para las fechas asociadas con alta biomasa, las texturas proporcionan información complementaria. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Grey level co-occurrence matrix | es_ES |
dc.subject | Synthetic Aperture Radar | es_ES |
dc.subject | Vegetation cover | es_ES |
dc.subject | Land cover | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Matriz de co-ocurrencia de nivel de gris | es_ES |
dc.subject | Radar de apertura sintética | es_ES |
dc.subject | Cobertura vegetal | es_ES |
dc.subject | Cobertura terrestre | es_ES |
dc.subject | Clasificación | es_ES |
dc.title | Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina | es_ES |
dc.title.alternative | Clasificación de coberturas en humedales utilizando datos de Sentinel-1 (Banda C): un caso de estudio en el delta del río Paraná, Argentina | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2022.16915 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Rajngewerc, M.; Grimson, R.; Bali, L.; Minotti, P.; Kandus, P. (2022). Cover classifications in wetlands using Sentinel-1 data (Band C): a case study in the Parana river delta, Argentina. Revista de Teledetección. (60):29-46. https://doi.org/10.4995/raet.2022.16915 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2022.16915 | es_ES |
dc.description.upvformatpinicio | 29 | es_ES |
dc.description.upvformatpfin | 46 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 60 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\16915 | es_ES |
dc.description.references | Arsen, A., Crétaux, J. F. , Berge-Nguyen, M., del Rio, R. A., 2013. Remote Sensing-Derived Bathymetry of Lake Poopó. Remote Sensing, 6(1),407-20. https://doi.org/10.3390/rs6010407 | es_ES |
dc.description.references | Arzandeh, Sepideh, and Jinfei Wang, 2002. Texture Evaluation of RADARSAT Imagery for Wetland Mapping. Canadian Journal of Remote Sensing, 28(5), 653-66. https://doi.org/10.5589/m02-061 | es_ES |
dc.description.references | Ball, J. E., Anderson, D. T., Chan, C.S., 2017. Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges for the Community. Journal of Applied Remote Sensing, 11(4), 1-54. https://doi.org/10.1117/1.JRS.11.042609 | es_ES |
dc.description.references | Belgiu, M., Drăguţ, L., 2016. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 | es_ES |
dc.description.references | Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., 2015. TerraSAR-X Dual-Pol Time-Series for Mapping of Wetland Vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 107, 90-98. https://doi.org/10.1016/j.isprsjprs.2015.05.001 | es_ES |
dc.description.references | Bourgeau-Chavez, L., Endres, S., Battaglia, M., Miller, M.E., Banda, E., Laubach, Z., Phyllis Higman, Chow-Fraser, P., Marcaccio, J., 2015. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery. Remote Sensing, 7(7), 8655-82. https://doi.org/10.3390/rs70708655 | es_ES |
dc.description.references | Breiman, L., 2001. Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 | es_ES |
dc.description.references | Brisco, B., Kapfer, M., Hirose, T., Tedford, B., Liu, J., 2011. Evaluation of C-Band Polarization Diversity and Polarimetry for Wetland Mapping. Canadian Journal of Remote Sensing, 37(1), 82-92. https://doi.org/10.5589/m11-017 | es_ES |
dc.description.references | Caballero, G. R., Platzeck, G., Pezzola, A., Casella, A., Winschel, C., Silva, S. S., Ludueña, E., Pasqualotto, N., Delegido, J., 2020. Assessment of Multi-Date Sentinel-1 Polarizations and GLCM Texture Features Capacity for Onion and Sunflower Classification in an Irrigated Valley: An Object Level Approach. Agronomy, 10(6), 845. https://doi.org/10.3390/agronomy10060845 | es_ES |
dc.description.references | Congalton, R. G., Green, K., 2005. Assessing the Accuracy of Remotely Sensed Data Principles and Practices. Florida: Taylor & Francis. | es_ES |
dc.description.references | Dabboor, M., Brisco, B., 2018. Wetland Monitoring and Mapping Using Synthetic Aperture Radar, Wetlands Management. Assessing Risk and Sustainable Solutions. IntechOpen. https://doi.org/10.5772/intechopen.80224 | es_ES |
dc.description.references | ESA Sentinel Application Platform. 2019. SNAP. Version 6. http://step.esa.int | es_ES |
dc.description.references | Filipponi, F., 2019. Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ECRS-3-06201 | es_ES |
dc.description.references | Gallant, A. L., 2015. The Challenges of Remote Monitoring of Wetlands. Remote Sensing, 7(8), 10938-50. https://doi.org/10.3390/rs70810938 | es_ES |
dc.description.references | Gong, P., Marceau, D. J., Howarth, P. J., 1992. A Comparison of Spatial Feature Extraction Algorithms for Land-Use Classification with SPOT HRV Data, 40(2), 137-151. https://doi.org/10.1016/0034-4257(92)90011-8 | es_ES |
dc.description.references | Grimson, R., Morandeira, N.S., Gayol, M. P., Kandus, P., 2019. Freshwater Marsh Classification in the Lower Paraná River Floodplain: An Object-Based Approach on Multitemporal X-Band COSMO-SkyMed Data. Journal of Applied Remote Sensing, 13(1), 1-14. https://doi.org/10.1117/1.JRS.13.014531 | es_ES |
dc.description.references | Grings, F. M., Ferrazzoli, P., Jacobo-Berlles, J. C., Karszenbaum, H., Tiffenberg, J., Pratolongo, P., Kandus, P., 2006. Monitoring Flood Condition in Marshes Using EM Models and Envisat ASAR Observations. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 936-42. https://doi.org/10.1109/TGRS.2005.863482 | es_ES |
dc.description.references | Hall-Beyer, M., 2017. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. International Journal of Remote Sensing, 38(5), 1312-38. https://doi.org/10.1080/01431161.2016.1278314 | es_ES |
dc.description.references | Haralick, R. M., 1979. Statistical and Structural Approaches to Texture. Proceedings of the IEEE, 67(5), 786-804. https://doi.org/10.1109/PROC.1979.11328 | es_ES |
dc.description.references | Hess, L. L., Melack, J. M., Novo, E. M. L. M., Barbosa, C. C. F., Gastil, M., 2003. Dual-Season Mapping of Wetland Inundation and Vegetation for the Central Amazon Basin. Remote Sensing of Environment, 87(4), 404-28. https://doi.org/10.1016/j.rse.2003.04.001 | es_ES |
dc.description.references | Huang, C., L. S. D., Townshend, J. R. G., 2002. An Assessment of Support Vector Machines for Land Cover Classification. International Journal of Remote Sensing, 23(4), 725-49. https://doi.org/10.1080/01431160110040323 | es_ES |
dc.description.references | James, G., Witten, D., Hastie, T., Tibshirani, R., 2021. An Introduction to Statistical Learning with Applications in R Second Edition. New York: Springer. https://doi.org/10.1007/978-1-0716-1418-1 | es_ES |
dc.description.references | Kandus, P., Malvárez, A.I. 2004. Vegetation Patterns and Change Analysis in the Lower Delta Islands of the Paraná River (Argentina). Wetlands, 24(3), 620-632. https://doi.org/10.1672/0277-5212(2004)024[0620:VPACAI]2.0.CO;2 | es_ES |
dc.description.references | Kandus, P., Karszenbaum, H., Frulla, L. 1999. Land Cover Classification System for the Lower Delta of the Paraná River (Argentina): Its Relationship with Landsat Thematic Mapper Spectral Classes. Journal of Coastal Research, 15(4), 909-926. | es_ES |
dc.description.references | Kandus, P., Karszenbaum, H., Pultz, T., Parmuchi, G., Bava, J. 2001. Influence of Flood Conditions and Vegetation Status on the Radar Backscatter of Wetland Ecosystems. Canadian Journal of Remote Sensing, 27, 651-662. https://doi.org/10.1080/07038992.2001.10854907 | es_ES |
dc.description.references | Kandus, P., Malvárez, A.I., Madanes, N. 2003. Estudio de Las Comunidades de Plantas Herbáceas de Las Islas Bonaerenses Del Bajo Delta Del Río Paraná (Argentina). Darwiniana, 41(1-4), 1-16. | es_ES |
dc.description.references | Kandus, P., Quintana, R.D., Bó, R.F. 2006. Patrones de Paisaje y Biodiversidad Del Bajo Delta Del Río Paraná. Mapa de Ambientes. Buenos Aires: Wetlands International. | es_ES |
dc.description.references | Krishna, G.B., Mittal, V. 2018. Land Cover Classification of Full Polarimetric PALSAR Images using Decision Tree based on Intensity and Texture Statistical Features. International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), 2018, pp. 739-744. https://doi.org/10.1109/ICRIEECE44171.2018.9009289 | es_ES |
dc.description.references | Kupidura, P., 2019. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery. Remote Sensing, 11(10), 1233. https://doi.org/10.3390/rs11101233 | es_ES |
dc.description.references | Kurvonen, L., Pulliainen, J., Hallikainen, M., 1999. Retrieval of Biomass in Boreal Forests from Multitemporal ERS-1 and JERS-1 SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 198-205. https://doi.org/10.1109/36.739154 | es_ES |
dc.description.references | Larocque, A., Leblon, B., Woodward, R., Bourgeau-Chavez, L., 2020. Wetland Mapping in New Brunswick, Canada with Landsat5-Tm, Alos-Palsar, and Radarsat-2 Imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5, 301-308. https://doi.org/10.5194/isprs-annals-V-3-2020-301-2020 | es_ES |
dc.description.references | LaRocque, A., Phiri, C., Leblon, B., Pirotti, F., Connor, K., Hanson, A., 2020. Wetland Mapping with Landsat 8 OLI, Sentinel-1, ALOS-1 PALSAR, and LiDAR Data in Southern New Brunswick, Canada. Remote Sensing, 12(13), 2095. https://doi.org/10.3390/rs12132095 | es_ES |
dc.description.references | Lehner, B., Döll, P., 2004. Development and Validation of a Global Database of Lakes, Reservoirs and Wetlands. Journal of Hydrology, 296(1-4), 1-22. https://doi.org/10.1016/j.jhydrol.2004.03.028 | es_ES |
dc.description.references | Lin K-F, Perissin D. 2018. Single-Polarized SAR Classification Based on a Multi-Temporal Image Stack. Remote Sensing, 10(7), 1087. https://doi.org/10.3390/rs10071087 | es_ES |
dc.description.references | Lloyd, C. D., Berberoglu, S., Curran, P. J., Atkinson, P. M., 2004. A Comparison of Texture Measures for the Per-Field Classification of Mediterranean Land Cover. International Journal of Remote Sensing, 25(19), 3943-65. https://doi.org/10.1080/0143116042000192321 | es_ES |
dc.description.references | Lu, D., Weng, Q., 2007. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. International Journal of Remote Sensing, 28(5), 823-70. https://doi.org/10.1080/01431160600746456 | es_ES |
dc.description.references | Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., Gill, E., DeLancey, E.R, Bourgeau-Chavez, L., 2020. Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Canadian Journal of Remote Sensing, 46(1), 15-33. https://doi.org/10.1080/07038992.2019.1711366 | es_ES |
dc.description.references | Marti-Cardona, B., Lopez-Martinez, C., Dolz-Ripolles, J., Bladè-Castellet, E., 2010. ASAR Polarimetric, Multi-Incidence Angle and Multitemporal Characterization of Doñana Wetlands for Flood Extent Monitoring. Remote Sensing of Environment, 114(11), 2802-15. https://doi.org/10.1016/j.rse.2010.06.015 | es_ES |
dc.description.references | McNemar, Quinn. 1947. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika, 12(2). https://doi.org/10.1007/BF02295996 | es_ES |
dc.description.references | Meyer, F. J., 2019. Spaceborne Synthetic Aperture Radar"¯: Principles , Data Access , and Basic Processing Techniques. in SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. NASA. | es_ES |
dc.description.references | Mishra, V. N., Prasad, R., Rai, P. K., Vishwakarma, A. K., Arora, A., 2019. Performance Evaluation of Textural Features in Improving Land Use/Land Cover Classification Accuracy of Heterogeneous Landscape Using Multi-Sensor Remote Sensing Data. Earth Science Informatics, 12(1), 71-86. https://doi.org/10.1007/s12145-018-0369-z | es_ES |
dc.description.references | Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., Motagh, M., 2018. Multi-Temporal, Multi-Frequency, and Multi-Polarization Coherence and SAR Backscatter Analysis of Wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 78-93. https://doi.org/10.1016/j.isprsjprs.2018.05.009 | es_ES |
dc.description.references | Morandeira, N.S., Grimson, R., Kandus, P. 2016. Assessment of SAR speckle filters in the context of object-based image analysis. Remote Sensing Letters, 7(2), 150-159. https://doi.org/10.1080/2150704X.2015.1117153 | es_ES |
dc.description.references | Morandeira, N.S., Barber, M.E., Grings, F.M., Ahern, F., Kandus, P., Brisco, B. 2021. Response of MultiIncidence Angle Polarimetric RADARSAT-2 Data to Herbaceous Vegetation Features in the Lower Paraná River Floodplain, Argentina. Remote Sensing, 13(13), 2518. https://doi.org/10.3390/rs13132518 | es_ES |
dc.description.references | Mueller, M. M., Dubois, C., Jagdhuber, T., Pathe, C., Schmullius, C., 2021. Investigation of Sentinel-1 time series for sensitivity to fern vegetation in an european temperate forest. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2021, 127-34. https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021 | es_ES |
dc.description.references | Numbisi, F. N., Van Coillie, F., De Wulf, R., 2018. Multi-Date Sentinel1 SAR Image Textures Discriminate Perennial Agroforests in a Tropical Forest-Savannah Transition Landscape. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42, 339-346. https://doi.org/10.5194/isprs-archives-XLII-1-339-2018 | es_ES |
dc.description.references | Numbisi, F. N., Van Coillie, F., De Wulf, R., 2019. Delineation of Cocoa Agroforests Using Multiseason Sentinel-1 SAR Images: A Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping. ISPRS International Journal of Geo-Information, 8(4), 179. https://doi.org/10.3390/ijgi8040179 | es_ES |
dc.description.references | Numbisi, F. N., Van Coillie, F., 2020. Does Sentinel-1A Backscatter Capture the Spatial Variability in Canopy Gaps of Tropical Agroforests? A Proof-of-Concept in Cocoa Landscapes in Cameroon. Remote Sensing, 12(24), 1-29. https://doi.org/10.3390/rs12244163 | es_ES |
dc.description.references | Nyoungui, A. N., E. Tonye, Akono, A., 2002. Evaluation of Speckle Filtering and Texture Analysis Methods for Land Cover Classification from SAR Images. International Journal of Remote Sensing, 23(9), 1895-1925. https://doi.org/10.1080/01431160110036157 | es_ES |
dc.description.references | Oliver, C., Quegan. S., 2004. Understanding Synthetic Aperture Radar Images. Raleigh: SciTech. | es_ES |
dc.description.references | Ozesmi, S.L., Bauer, M.E. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10, 381-402. https://doi.org/10.1023/A:1020908432489 | es_ES |
dc.description.references | Otukei, J.R., Blaschke, T. 2010. Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms. International Journal of Applied Earth Observation and Geoinformation, 12(1), S27-S31. https://doi.org/10.1016/j.jag.2009.11.002 | es_ES |
dc.description.references | Pal, M., 2005. Random Forest Classifier for Remote Sensing Classification. International Journal of Remote Sensing, 26(1), 217-22. https://doi.org/10.1080/01431160412331269698 | es_ES |
dc.description.references | Panuju D.R., Paull, D.J., Trisasongko, B.H. 2019. Combining Binary and Post-Classification Change Analysis of Augmented ALOS Backscatter for Identifying Subtle Land Cover Changes. Remote Sensing, 11(1), 100. https://doi.org/10.3390/rs11010100 | es_ES |
dc.description.references | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchescay, E., 2011. Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2850-2830. | es_ES |
dc.description.references | Planet Team. 2017. Planet Application Program Interface: In Space for Life on Earth. | es_ES |
dc.description.references | Pulella, A., Sica, F., Rizzoli, P., 2020. Monthly Deforestation Monitoring with Sentinel-1 Multi-Temporal Signatures and InSAR Coherences. Revista de Teledetección, 0(56), 1-22. https://doi.org/10.4995/raet.2020.14308 | es_ES |
dc.description.references | Reid, W., Mooney, H.,Cropper, A., Capistrano, D., Carpenter, S., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A., Hassan, R., Kasperson, R., Leemans, R., May, R., Mcmichael, A., Pingali, P., Samper, C., Scholes, R., Watson, R., Zakri, A. H. Zurek, M., 2005. Millenium Ecosystem Assessment Synthesis Report. | es_ES |
dc.description.references | Salvia, M., Grings, F., Karszenbaum, H., Ferrazzoli, P., Kandus, P., Soldano, A., Guerriero, L., 2008. Monitoring Inundation Dynamics in Parana River, Argentina, by C and L Band SAR. International Geoscience and Remote Sensing Symposium (IGARSS), 1, 102-105. | es_ES |
dc.description.references | https://doi.org/10.1109/IGARSS.2008.4778803 | es_ES |
dc.description.references | Salvia, M. M., Karszenbaum, H., Kandus, P., Grings, F. M., 2009. Datos Satelitales Ópticos y de Radar Para El Mapeo de Ambientes En Macrosistemas de Humedal. Revista de Teledetección, 31, 35-51. | es_ES |
dc.description.references | Sivasankar, T., Kumar, D., Srivastava, H. S., Patel, P., 2018. Advances in Radar Remote Sensing of Agricultural Crops: A Review. International Journal on Advanced Science, Engineering and Information Technology, 8(4), 1126-37. https://doi.org/10.18517/ijaseit.8.4.5797 | es_ES |
dc.description.references | Treitz, P. M., Howarth, P. J. , Filho, O. R., Soulis, E. D., 2000. Agricultural Crop Classification Using SAR Tone and Texture Statistics. Canadian Journal of Remote Sensing, 26(1), 18-29. https://doi.org/10.1080/07038992.2000.10874751 | es_ES |
dc.description.references | Tsyganskaya, V., Martinis, S., Marzahn, P, Ludwig, R., 2018. Detection of Temporary Flooded Vegetation Using Sentinel-1 Time Series Data. Remote Sensing, 10(8), 1286. https://doi.org/10.3390/rs10081286 | es_ES |
dc.description.references | Vanama, V. S. K., Mandal, D., Rao., Y. S., 2020. GEE4FLOOD: Rapid Mapping of Flood Areas Using Temporal Sentinel-1 SAR Images with Google Earth Engine Cloud Platform. Journal of Applied Remote Sensing, 14(3), 1-23. https://doi.org/10.1117/1.JRS.14.034505 | es_ES |