- -

High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern Morocco): An Approach Using SAR Sentinel-1 Time Series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern Morocco): An Approach Using SAR Sentinel-1 Time Series

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nizar, El Mortaji es_ES
dc.contributor.author Wahbi, Miriam es_ES
dc.contributor.author Ait Kazzi, Mohamed es_ES
dc.contributor.author Yazidi Alaoui, Otmane es_ES
dc.contributor.author Boulaassal, Hakim es_ES
dc.contributor.author Maatouk, Mustapha es_ES
dc.contributor.author Zaghloul, Mohamed Najib es_ES
dc.contributor.author El Kharki, Omar es_ES
dc.coverage.spatial east=-5.996123799999999; north=35.0773722; name=Río Loukkos, Marroc es_ES
dc.date.accessioned 2022-09-06T07:21:19Z
dc.date.available 2022-09-06T07:21:19Z
dc.date.issued 2022-07-26
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/185313
dc.description.abstract [EN] Remote  sensing  has  become  more  and  more  a  reliable  tool  for  mapping  land  cover  and  monitoring  cropland. Much of the work done in this field uses optical remote sensing data. In Morocco, active remote sensing data remain under-exploited despite their importance in monitoring spatial and temporal dynamics of land cover and crops even during cloudy weather. This study aims to explore the potential of C-band Sentinel-1 data in the production of a high-resolution land cover mapping and crop classification within the irrigated Loukkos watershed agricultural landscape in northern Morocco. The work was achieved by using 33 dual-polarized images in vertical-vertical  (VV)  and  vertical-horizontal  (VH)  polarizations.  The  images  were  acquired  in  ascending  orbits  between  April 16 and October 25, 2020, with the purpose to track the backscattering behavior of the main crops and other land  cover  classes  in  the  study  area.  The  results  showed  that  the  backscatter  increased  with  the  phenological  development  of  the  monitored  crops  (rice,  watermelon,  peanuts,  and  winter  crops),  strongly  for  the  VH  and  VV  bands, and slightly for the VH/VV ratio. The other classes (water, built-up, forest, fruit trees, permanent vegetation, greenhouses, and bare lands) did not show significant variation during this period. Based on the backscattering analysis and the field data, a supervised classification was carried out, using the Random Forest Classifier (RF) algorithm.  Results  showed  that  radiometric  characteristics  and  6  days  time  resolution  covered  by  Sentinel-1  constellation gave a high classification accuracy by dual-polarization with Radar Ratio (VH/VV) or Radar Vegetation Index and textural features (between 74.07% and 75.19%). Accordingly, this study proves that the Sentinel-1 data provide useful information and a high potential for multi-temporal analyses of crop monitoring, and reliable land cover mapping which could be a practical source of information for various purposes in order to undertake food security issues. es_ES
dc.description.abstract [ES] La teledetección se ha convertido en una herramienta cada vez más fiable para cartografiar la cubierta vegetal y controlar las tierras de cultivo. Gran parte de los trabajos realizados en este campo utilizan datos ópticos de teledetección. Además, en Marruecos, los datos de teledetección activa siguen estando infrautilizados, a pesar de su importancia para el seguimiento de la dinámica espacial y temporal de la cubierta vegetal y de los cultivos, incluso con tiempo nublado. Este estudio tiene como objetivo explorar el potencial de los datos de la banda C de Sentinel-1 en la producción de una cartografía de alta resolución de la cubierta del suelo y la clasificación de los cultivos dentro del paisaje agrícola de la cuenca del Loukkos de regadío en el norte de Marruecos. Este trabajo se ha realizado utilizando 33 imágenes de doble polarización vertical-vertical (VV) y vertical-horizontal (VH). Las imágenes fueron adquiridas en órbitas ascendentes entre el 16 de abril y el 25 de octubre de 2020, con el propósito de rastrear el comportamiento de retrodispersión de los principales cultivos y otras clases de cobertura del suelo en el área de estudio. Los gráficos obtenidos muestran que la retrodispersión aumenta con el desarrollo fenológico de los tres cultivos monitorizados (arroz, sandía, cacahuetes, cultivos de invierno), fuertemente para las bandas VH y VV, y ligeramente para el ratio VH/VV. Las otras clases (agua, edificado, bosque, árboles frutales, vegetación permanente, invernaderos y tierras desnudas) no muestran una variación significativa durante este periodo. A partir del análisis de retrodispersión y de los datos de campo, se llevó a cabo una clasificación supervisada, utilizando el  algoritmo  Random Forest Classifier (RF). Los resultados muestran que las características radiométricas y la resolución temporal para los 6 días cubiertos por la constelación Sentinel-1 dan una alta precisión de clasificación por polarización dual con Ratio de Radar (VH/VV) o Índice de Vegetación de Radar y características de la textura (entre  74,07%  y  75,17%).  En  consecuencia,  este  estudio  demuestra  que  los  datos  de  Sentinel-1  proporcionan  información útil y un alto potencial para los análisis multitemporales de seguimiento de los cultivos, así como una cartografía fiable de la cubierta terrestre que debería ser una fuente de información práctica para para varios propósitos a fin de acometer cuestiones de seguridad alimentaria. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Land cover es_ES
dc.subject Sentinel-1 es_ES
dc.subject Crop classification es_ES
dc.subject Time series es_ES
dc.subject Loukkos watershed es_ES
dc.subject Cubierta del suelo es_ES
dc.subject Clasificación de cultivos es_ES
dc.subject Series temporales es_ES
dc.subject Cuenca del Loukkos es_ES
dc.title High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern Morocco): An Approach Using SAR Sentinel-1 Time Series es_ES
dc.title.alternative Cartografía de alta resolución de la cubierta del suelo y clasificación de los cultivos en la cuenca del Loukkos (norte de Marruecos): Un enfoque que utiliza las series temporales de SAR Sentinel-1 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2022.17426
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Nizar, EM.; Wahbi, M.; Ait Kazzi, M.; Yazidi Alaoui, O.; Boulaassal, H.; Maatouk, M.; Zaghloul, MN.... (2022). High Resolution Land Cover Mapping and Crop Classification in the Loukkos Watershed (Northern Morocco): An Approach Using SAR Sentinel-1 Time Series. Revista de Teledetección. (60):47-69. https://doi.org/10.4995/raet.2022.17426 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2022.17426 es_ES
dc.description.upvformatpinicio 47 es_ES
dc.description.upvformatpfin 69 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 60 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\17426 es_ES
dc.description.references Abdikan, S., Sanli, F.B., Ustuner, M., Calò, F., 2016. LAND COVER MAPPING USING SENTINEL-1 SAR DATA. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B7, 757–761. https://doi.org/10.5194/isprsarchives-XLI-B7-757-2016 es_ES
dc.description.references Arias, M., Campo-Bescós, M.Á., Álvarez-Mozos, J., 2020. Crop Classification Based on Temporal Signatures of Sentinel-1 Observations over Navarre Province, Spain. Remote Sens. 12, 278. https://doi.org/10.3390/rs12020278 es_ES
dc.description.references Baghdadi, N., Bernier, M., Gauthier, R., Neeson, I. 2001. Evaluation of C-band SAR data for wetlands mapping. International Journal of Remote Sensing 22, 71–88. https://doi.org/10.1080/014311601750038857 es_ES
dc.description.references Balzter, H., Cole, B., Thiel, C., Schmullius, C., 2015. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sens. 7, 14876–14898. https://doi.org/10.3390/rs71114876 es_ES
dc.description.references Bargiel, D., 2017. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 198, 369–383. https://doi.org/10.1016/j.rse.2017.06.022 es_ES
dc.description.references Bargiel, D., Herrmann, S., 2011. Multi-Temporal Land-Cover Classification of Agricultural Areas in Two European Regions with High Resolution Spotlight TerraSAR-X Data. Remote Sens. 3, 859–877. https://doi.org/10.3390/rs3050859 es_ES
dc.description.references Bazzi, H., Baghdadi, N., El Hajj, M., Zribi, M., Minh, D.H.T., Ndikumana, E., Courault, D., Belhouchette, H., 2019. Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France. Remote Sens. 11, 887. https://doi.org/10.3390/rs11070887 es_ES
dc.description.references Breiman, L., 1999. RANDOM FORESTS--RANDOM FEATURES. Tech. Rep. 567, Statistics Department, University of California, Berkeley, 29. es_ES
dc.description.references Brisco, B., Ahern, F., Murnaghan, K., White, L., Canisus, F., Lancaster, P., 2017. Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring. Remote Sens. 9, 158. https://doi.org/10.3390/rs9020158 es_ES
dc.description.references Brown, S.C.M., Quegan, S., Morrison, K., Bennett, J.C., Cookmartin, G., 2003. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Trans. Geosci. Remote Sens. 41, 1602–1610. https://doi.org/10.1109/TGRS.2003.814132 es_ES
dc.description.references Chen, S., Useya, J., Mugiyo, H., 2020. Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination and classification: case of Masvingo, Zimbabwe. Heliyon 6, e05358. https://doi.org/10.1016/j.heliyon.2020.e05358 es_ES
dc.description.references Clauss, K., Ottinger, M., Kuenzer, C., 2018. Mapping rice areas with Sentinel-1 time series and superpixel segmentation. Int. J. Remote Sens. 39, 1399–1420. https://doi.org/10.1080/01431161.2017.1404162 es_ES
dc.description.references Denize, J., Hubert-Moy, L., Pottier, E., 2019. Polarimetric SAR Time-Series for Identification of Winter Land Use. Sensors 19, 5574. https://doi.org/10.3390/s19245574 es_ES
dc.description.references Dimov, D., Kuhn, J., Conrad, C., 2016. ASSESSMENT OF CROPPING SYSTEM DIVERSITY IN THE FERGANA VALLEY THROUGH IMAGE FUSION OF LANDSAT 8 AND SENTINEL-1. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III–7, 173–180. https://doi.org/10.5194/isprsannals-III-7-173-2016 es_ES
dc.description.references Dingle Robertson, L., M. Davidson, A., McNairn, H., Hosseini, M., Mitchell, S., de Abelleyra, D., Verón, S., le Maire, G., Plannells, M., Valero, S., Ahmadian, N., Coffin, A., Bosch, D., H. Cosh, M., Basso, B., Saliendra, N., 2020. C-band synthetic aperture radar (SAR) imagery for the classification of diverse cropping systems. Int. J. Remote Sens. 41, 9628–9649. https://doi.org/10.1080/01431161.2020.1805136 es_ES
dc.description.references Falcucci, A., Maiorano, L., Boitani, L., 2007. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 22, 617–631. https://doi.org/10.1007/s10980-006-9056-4 es_ES
dc.description.references Geymen, A., Baz, I., 2007. Monitoring urban growth and detecting land-cover changes on the Istanbul metropolitan area. Environ. Monit. Assess. 136, 449–459. https://doi.org/10.1007/s10661-007-9699-x es_ES
dc.description.references Griffiths, P., van der Linden, S., Kuemmerle, T., Hostert, P. 2013. A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2088–2101. https://doi.org/10.1109/JSTARS.2012.2228167 es_ES
dc.description.references Hansen, M.C., Egorov, A., Roy, D.P., Potapov, P., Ju, J., Turubanova, S., Kommareddy, I., Loveland, T.R. 2011. Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project. Remote Sensing Letters, 2, 279–288. https://doi.org/10.1080/01431161.2010.519002 es_ES
dc.description.references Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. SMC-3, 610–621. https://doi.org/10.1109/TSMC.1973.4309314 es_ES
dc.description.references Harfenmeister, K., Spengler, D., Weltzien, C., 2019. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data. Remote Sens. 11, 1569. https://doi.org/10.3390/rs11131569 es_ES
dc.description.references Hütt, C., Waldhoff, G., 2018. Multi-data approach for crop classification using multitemporal, dual-polarimetric TerraSAR-X data, and official geodata. Eur. J. Remote Sens. 51, 62–74. https://doi.org/10.1080/22797254.2017.1401909 es_ES
dc.description.references Jeevalakshmi, D., Reddy, S.N., Manikiam, B., 2016. Land cover classification based on NDVI using LANDSAT8 time series: A case study Tirupati region, in: 2016 International Conference on Communication and Signal Processing (ICCSP). Presented at the 2016 International Conference on Communication and Signal Processing (ICCSP), IEEE, Melmaruvathur, Tamilnadu, India, pp. 1332–1335. https://doi.org/10.1109/ICCSP.2016.7754369 es_ES
dc.description.references Jiancheng S., Dozier, J., Rott, H. 1994. Snow mapping in alpine regions with synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 32, 152–158. https://doi.org/10.1109/36.285197 es_ES
dc.description.references Khalil, R.Z., Saad-ul-Haque, 2018. InSAR coherence-based land cover classification of Okara, Pakistan. Egypt. J. Remote Sens. Space Sci. 21, S23–S28. https://doi.org/10.1016/j.ejrs.2017.08.005 es_ES
dc.description.references Kpienbaareh, D., Sun, X., Wang, J., Luginaah, I., Bezner Kerr, R., Lupafya, E., Dakishoni, L., 2021. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 13, 700. https://doi.org/10.3390/rs13040700 es_ES
dc.description.references Kumar, S.D., Rao, S.S., Sharma, J.R., 2013. Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton. Indian Cartogr 33, 91–96. es_ES
dc.description.references Kussul, N., Lemoine, G., Gallego, F.J., Skakun, S.V., Lavreniuk, M., Shelestov, A.Yu., 2016. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 2500–2508. https://doi.org/10.1109/JSTARS.2016.2560141 es_ES
dc.description.references Larrañaga, A., Álvarez-Mozos, J., 2016. On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery. Remote Sens. 8, 335. https://doi.org/10.3390/rs8040335 es_ES
dc.description.references Lee, J.S., Jurkevich, L., Dewaele, P., Wambacq, P., Oosterlinck, A., 1994. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 8, 313–340. https://doi.org/10.1080/02757259409532206 es_ES
dc.description.references Mandal, D., Kumar, V., Bhattacharya, A., Rao, Y.S., Siqueira, P., Bera, S., 2018. Sen4Rice: A Processing Chain for Differentiating Early and Late Transplanted Rice Using Time-Series Sentinel-1 SAR Data With Google Earth Engine. IEEE Geosci. Remote Sens. Lett. 15, 1947–1951. https://doi.org/10.1109/LGRS.2018.2865816 es_ES
dc.description.references Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H., Rao, Y.S. 2020. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247, 111954. https://doi.org/10.1016/j.rse.2020.111954 es_ES
dc.description.references Mascolo, L., Lopez-Sanchez, J.M., Vicente-Guijalba, F., Nunziata, F., Migliaccio, M., Mazzarella, G., 2016. A Complete Procedure for Crop Phenology Estimation With PolSAR Data Based on the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 54, 6505–6515. https://doi.org/10.1109/TGRS.2016.2585744 es_ES
dc.description.references McNairn, H., Champagne, C., Shang, J., Holmstrom, D., Reichert, G., 2009. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 64, 434–449. https://doi.org/10.1016/j.isprsjprs.2008.07.006 es_ES
dc.description.references McNairn, H., Shang, J., Jiao, X. Champagne, C. 2009b. The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 3981–3992. https://doi.org/10.1109/TGRS.2009.2026052 es_ES
dc.description.references McNairn, H., Shang, J., 2016. A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring, in: Ban, Y. (Ed.), Multitemporal Remote Sensing. Springer International Publishing, Cham, pp. 317–340. https://doi.org/10.1007/978-3-319-47037-5_15 es_ES
dc.description.references Mestre-Quereda, A., Lopez-Sanchez, J.M., Vicente-Guijalba, F., Jacob, A.W., Engdahl, M.E., 2020. Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 4070–4084. https://doi.org/10.1109/JSTARS.2020.3008096 es_ES
dc.description.references Moumni, A., Lahrouni, A., 2021. Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area. Scientifica 2021, 1–20. https://doi.org/10.1155/2021/8810279 es_ES
dc.description.references Munger, P., Bleiholder, H., Hack, H., Heß, M., Stauss, R., Boom, T., Weber, E. 1998. Phenological Growth Stages of the Peanut Plant (Arachis hypogaea L.): Codification and Description according to the BBCH Scale. Journal of Agronomy and Crop Science, 180, 101–107. https://doi.org/10.1111/j.1439-037X.1998.tb00377.x es_ES
dc.description.references Nasirzadehdizaji, R., Cakir, Z., Balik Sanli, F., Abdikan, S., Pepe, A., Calò, F. 2021. Sentinel-1 interferometric coherence and backscattering analysis for crop monitoring. Computers and Electronics in Agriculture, 185, 106118. https://doi.org/10.1016/j.compag.2021.106118 es_ES
dc.description.references Nasirzadehdizaji, R., Balik Sanli, F., Abdikan, S., Cakir, Z., Sekertekin, A., Ustuner, M., 2019. Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Applied Sciences, 9, 655. https://doi.org/10.3390/app9040655 es_ES
dc.description.references Ndikumana, E., Ho Tong Minh, D., Dang Nguyen, H., Baghdadi, N., Courault, D., Hossard, L., El Moussawi, I. 2018. Estimation of Rice Height and Biomass Using Multitemporal SAR Sentinel-1 for Camargue, Southern France. Remote Sensing, 10, 1394. https://doi.org/10.3390/rs10091394 es_ES
dc.description.references Nelson, A., Setiyono, T., Rala, A., Quicho, E., Raviz, J., Abonete, P., Maunahan, A., Garcia, C., Bhatti, H., Villano, L., Thongbai, P., Holecz, F., Barbieri, M., Collivignarelli, F., Gatti, L., Quilang, E., Mabalay, M., Mabalot, P., Barroga, M., Bacong, A., Detoito, N., Berja, G., Varquez, F., Wahyunto, Kuntjoro, D., Murdiyati, S., Pazhanivelan, S., Kannan, P., Mary, P., Subramanian, E., Rakwatin, P., Intrman, A., Setapayak, T., Lertna, S., Minh, V., Tuan, V., Duong, T., Quyen, N., Van Kham, D., Hin, S., Veasna, T., Yadav, M., Chin, C., Ninh, N. 2014. Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project. Remote Sensing, 6, 10773–10812. https://doi.org/10.3390/rs61110773 es_ES
dc.description.references Panetti, A., Rostan, F., L’Abbate, M., Bruno, C., Bauleo, A., Catalano, T., Cotogni, M., Galvagni, L., Pietropaolo, A., Taini, G., Venditti, P., Huchler, M., Torres, R., Lokas, S., Bibby, D., Geudtner, D., 2014. Copernicus Sentinel-1 Satellite and C-SAR instrument, in: 2014 IEEE Geoscience and Remote Sensing Symposium. Presented at the IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium, IEEE, Quebec City, QC, pp. 1461–1464. https://doi.org/10.1109/IGARSS.2014.6946712 es_ES
dc.description.references Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G., 2016. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 187, 156–168. https://doi.org/10.1016/j.rse.2016.10.010 es_ES
dc.description.references Phan, H., Le Toan, T., Bouvet, A. 2021. Understanding Dense Time Series of Sentinel-1 Backscatter from Rice Fields: Case Study in a Province of the Mekong Delta, Vietnam. Remote Sensing, 13, 921. https://doi.org/10.3390/rs13050921 es_ES
dc.description.references Planque, C., Lucas, R., Punalekar, S., Chognard, S., Hurford, C., Owers, C., Horton, C., Guest, P., King, S., Williams, S., Bunting, P., 2021. National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. Remote Sens. 13, 846. https://doi.org/10.3390/rs13050846 es_ES
dc.description.references Pulvirenti, L., Squicciarino, G., Cenci, L., Boni, G., Pierdicca, N., Chini, M., Versace, C., Campanella, P., 2018. A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data. Environ. Model. Softw. 102, 13–28. https://doi.org/10.1016/j.envsoft.2017.12.022 es_ES
dc.description.references Selvaraj, S., Haldar, D., Danodia, A., 2019. Time series Sentinel-1A profile analysis for heterogeneous Kharif crops discrimination in North India. URSI AP-RASC 2019 New Delhi India 09 - 15 March 2019 4 pages. es_ES
dc.description.references Song, Y., Wang, J., 2019. Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series. Remote Sens. 11, 449. https://doi.org/10.3390/rs11040449 es_ES
dc.description.references Steinhausen, M.J., Wagner, P.D., Narasimhan, B., Waske, B., 2018. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinformation 73, 595–604. https://doi.org/10.1016/j.jag.2018.08.011 es_ES
dc.description.references Suresh, G., Gehrke, R., Wiatr, T., Hovenbitzer, M. 2016. Synthetic Aperture Radar (Sar) Based Classifiers for land applications in Germany. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B1, 1187–1193. https://doi.org/10.5194/isprsarchives-XLI-B1-1187-2016 es_ES
dc.description.references Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S., Pearlstine, L., 2013. Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int. J. Appl. Earth Obs. Geoinformation 23, 204–212. https://doi.org/10.1016/j.jag.2013.01.003 es_ES
dc.description.references Torbick, N., Chowdhury, D., Salas, W., Qi, J., 2017. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 9, 119. https://doi.org/10.3390/rs9020119 es_ES
dc.description.references Ullman, D.J., LeGrande, A.N., Carlson, A.E., Anslow, F.S., Licciardi, J.M., 2014. Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Clim. Past 10, 487–507. https://doi.org/10.5194/cp-10-487-2014 es_ES
dc.description.references Useya, J., Chen, S., 2019. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data. Chin. Geogr. Sci. 29, 626–639. https://doi.org/10.1007/s11769-019-1060-0 es_ES
dc.description.references Valcarce-Diñeiro, R., Arias-Pérez, B., Lopez-Sanchez, J.M., Sánchez, N., 2019. Multi-Temporal Dual- and Quad-Polarimetric Synthetic Aperture Radar Data for Crop-Type Mapping. Remote Sens. 11, 1518. https://doi.org/10.3390/rs11131518 es_ES
dc.description.references Van der Sande, C.J., de Jong, S.M., de Roo, A.P.J., 2003. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int. J. Appl. Earth Obs. Geoinformation 4, 217–229. https://doi.org/10.1016/S0303-2434(03)00003-5 es_ES
dc.description.references Van Tricht, K., Gobin, A., Gilliams, S., Piccard, I., 2018. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens. 10, 1642. https://doi.org/10.3390/rs10101642 es_ES
dc.description.references Vanniel, T., Mcvicar, T., Datt, B. 2005. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sensing of Environment, 98, 468–480. https://doi.org/10.1016/j.rse.2005.08.011 es_ES
dc.description.references Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F., Ceschia, E., 2017. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 199, 415–426. https://doi.org/10.1016/j.rse.2017.07.015 es_ES
dc.description.references Whelen, T., Siqueira, P. 2017. Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin Valley. Remote Sensing of Environment, 193, 216–224. https://doi.org/10.1016/j.rse.2017.03.014 es_ES
dc.description.references Whelen, T., Siqueira, P., 2018a. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sens. Lett. 9, 411–420. https://doi.org/10.1080/2150704X.2018.1430393 es_ES
dc.description.references Whelen, T., Siqueira, P., 2018b. Coefficient of variation for use in crop area classification across multiple climates. Int. J. Appl. Earth Obs. Geoinformation 67, 114–122. https://doi.org/10.1016/j.jag.2017.12.014 es_ES
dc.description.references Yan, L., Roy, D.P. 2014. Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sensing of Environment, 144, 42–64. https://doi.org/10.1016/j.rse.2014.01.006 es_ES
dc.description.references Yunjin Kim, van Zyl, J.J., 2009. A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens. 47, 2519–2527. https://doi.org/10.1109/TGRS.2009.2014944 es_ES
dc.description.references Zakeri, H., Yamazaki, F., Liu, W. 2017. Texture Analysis and Land Cover Classification of Tehran Using Polarimetric Synthetic Aperture Radar Imagery. Applied Sciences, 7, 452. https://doi.org/10.3390/app7050452 es_ES
dc.description.references Zeng, Y., Zhang, J., van Genderen, J.L., Zhang, Y., 2010. Image fusion for land cover change detection. Int. J. Image Data Fusion 1, 193–215. https://doi.org/10.1080/19479831003802832 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem