- -

Data-driven conservation actions of heritage places curated with HBIM

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Data-driven conservation actions of heritage places curated with HBIM

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Saricaoglu, Tugba es_ES
dc.contributor.author Saygi, Gamze es_ES
dc.date.accessioned 2022-09-06T08:00:24Z
dc.date.available 2022-09-06T08:00:24Z
dc.date.issued 2022-07-27
dc.identifier.uri http://hdl.handle.net/10251/185320
dc.description.abstract [EN] Digital surveying tools provide a highly accurate geometric representation of cultural heritage sites in the form of point cloud data. With the recent advances in interoperability between point cloud data and Building Information Modelling (BIM), digital heritage researchers have introduced the Heritage/Historic Information Modelling (HBIM) notion to the field. As heritage data require safeguarding strategies to ensure their sustainability, the process is closely tied to conservation actions in the architectural conservation field. Focusing on the intersection of the ongoing trends in HBIM research and the global needs for heritage conservation actions, this paper tackles methodological pipelines for the data-driven management of archaeological heritage places. It illustrates how HBIM discourse could be beneficial for easing value-based decision-making in the conservation process. It introduces digital data-driven conservation actions by implementing a novel methodology for ancient building remains in Erythrae archaeological site (Turkey). The research ranges from a) surveying the in-situ remains and surrounding stones of the Heroon remains with digital photogrammetry and terrestrial laser scanning to b) designing a database system for building archaeology. The workflow offers high geometric fidelity and management of non-geometric heritage data by testing out the suitability and feasibility for the study of material culture and the physical assessment of archaeological building remains. This methodology is a fully data-enriched NURBS-based (non-uniform rational basis spline) three-dimensional (3D) model which is integrated and operational in the BIM environment for the holistic conservation process. Using a state-of-the-art digital heritage approach can be applied from raw data (initial stages) to decision-making about an archaeological heritage site (final stages). In conclusion, the paper offers a method for data-driven conservation actions, and given its methodological framework, it lends itself particularly well to HBIM-related solutions for building archaeology. es_ES
dc.description.abstract [ES] Las herramientas topográficas digitales proporcionan una representación geométrica muy exacta de sitios patrimoniales en forma de datos (nubes de puntos). Con los avances recientes de interoperabilidad entre nubes de puntos y modelado de información de la construcción (BIM), los investigadores en patrimonio digital han introducido la noción de modelado de información de la construcción patrimonial/histórica (HBIM) en este campo. Como los datos patrimoniales requieren estrategias de salvaguardia que garanticen su sostenibilibidad, el proceso está íntimamente ligado a acciones de conservación en el campo de la conservación arquitectónica. Teniendo en cuenta las últimas tendencias en investigación HBIM y las necesidades globales de las acciones de conservación patrimonial, este artículo afronta el flujo metodológico de la gestión basada en datos de sitios patrimoniales arqueológicos. Se introducen acciones de conservación basadas en datos que implementan una metodología novedosa en los restos edificados del sitio arqueológico de Erythrae (Turquía). La investigación aborda tanto la fase desde a) el topografiado in situ de los restos y las piedras circundantes de los restos de Heroon con fotogrametría digital y escaneado láser terrestre, hasta b) la fase del diseño del sistema de bases de datos en arqueología de la arquitectura. El flujo de trabajo ofrece alta fidelidad geométrica y de gestión de datos patrimoniales no geométricos; también prueba la idoneidad y viabilidad de cara al estudio de la cultura material y a la evaluación física de los restos de edificios arqueológicos. El modelo tridimensional (3D) enriquecido con datos basados en NURBS ( non-uniform rational B-splines ), se demuestra que es operativo en el proceso de conservación integral; este trata desde los datos sin procesar hasta la toma de decisiones sobre un sitio arqueológico-patrimonial, utilizando un procedimiento digital puntero. En conclusión, el artículo presenta un método orientado a acciones de conservación basadas en datos y, dado su marco metodológico, se presta particularmente bien a soluciones relacionadas con HBIM en arqueología de la arquitectura. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Virtual Archaeology Review es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Building archaeology es_ES
dc.subject Digital archaeology 3D heritage database es_ES
dc.subject Conservation decisions es_ES
dc.subject Historic Building Information Modelling (HBIM) es_ES
dc.subject NURBS (non-uniform rational basis splines) es_ES
dc.subject Scan-to-HBIM es_ES
dc.subject Arqueología de la arquitectura es_ES
dc.subject Bases de datos patrimoniales 3D es_ES
dc.subject Decisiones de conservación es_ES
dc.subject Modelado de información de la construcción histórica (HBIM) es_ES
dc.subject NURBS (B-splines racionales no uniformes) es_ES
dc.subject Escaneado-a-HBIM es_ES
dc.title Data-driven conservation actions of heritage places curated with HBIM es_ES
dc.title.alternative Acciones de conservación de lugares patrimoniales a partir de datos gestionados con HBIM es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/var.2022.17370
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Saricaoglu, T.; Saygi, G. (2022). Data-driven conservation actions of heritage places curated with HBIM. Virtual Archaeology Review. 13(27):17-32. https://doi.org/10.4995/var.2022.17370 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/var.2022.17370 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 32 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 27 es_ES
dc.identifier.eissn 1989-9947
dc.relation.pasarela OJS\17370 es_ES
dc.description.references Achille, C., Lombardini, N., & Tommasi, C. (2015). BIM and cultural heritage: compatibility tests in an archaeological site. Building Information Modelling (BIM) in Design, Construction and Operations, 1, 593–604. https://doi.org/10.2495/bim150481 es_ES
dc.description.references Andronikos, M. (1980). “The Royal Tombs at Vergina” The Search for Alexander. The Royal Graves at Vergina, 26(5). es_ES
dc.description.references Angulo, R., Pinto, F., Rodríguez, J., & Palomino, A. (2017). Digital anastylosis of the remains of a portal by master builder Hernán Ruiz: knowledge strategies, methods and modeling results. Digital Applications in Archaeology and Cultural Heritage, 7, 32–41. https://doi.org/10.1016/j.daach.2017.09.003 es_ES
dc.description.references Azhar, S. (2011). Building Information Modeling (BIM): trends, benefits, risks, and challenges for the AEC industry. Leadership and Management in Engineering, 11(3), 241–252. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127 es_ES
dc.description.references Bagnolo, V., Argiolas, R., & Cuccu, A. (2019). HBIM for archaeological sites: From SFM based survey to algorithmic modeling. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W9). https://doi.org/10.5194/isprs-archives-XLII-2-W9-57-2019 es_ES
dc.description.references Baik, A., Alitany, A., Boehm, J., & Robson, S. (2014). Jeddah historical building information modeling “JHBIM”-object library. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(5), 41–47. https://doi.org/10.5194/isprsannals-II-5-41-2014 es_ES
dc.description.references Baker, D. (2012). Defining paradata in heritage visualization. In A. Bentkowska-Kafel, H. Denard, & D. Baker (Eds.), Paradata and Transparency in Virtual Heritage (pp. 163–175). Ashgate. es_ES
dc.description.references Banfi, F. (2016). Building information modeling – a novel parametric modeling approach based on 3D surveys of historic architecture. In M. Ioannides, E. Fink, A. Moropoulou, M. Hagedorn-Saupe, A. Fresa, G. Liestøl, … P. Grussenmeyer (Eds.), Digital Heritage Progress in Cultural Heritage: Documentation, Preservation, and Protection (pp. 116–127). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-48496-9 es_ES
dc.description.references Banfi, F. (2019). The integration of a scan-to-HBIM process in BIM application: the development of an add-in to guide users in Autodesk Revit. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W11), 141–148. https://doi.org/10.5194/isprs-Archives-XLII-2-W11-141-2019 es_ES
dc.description.references Banfi, F., Brumana, R., Landi, A. G., Previtali, M., Roncoroni, F., & Stanga, C. (2022). Building archaeology informative modeling turned into 3D volume stratigraphy and extended reality time-lapse communication. Virtual Archaeology Review, 13(26), 1-21. https://doi.org/10.4995/var.2022.15313 es_ES
dc.description.references Banfi, F., Fai, S., & Brumana, R. (2017). BIM Automation: advanced modeling generative process for complex structures. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(2W2), 9–16. https://doi.org/10.5194/isprs-annals-IV-2-W2-9-2017 es_ES
dc.description.references Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review, 11(23), 16–33. https://doi.org/10.4995/var.2020.12416 es_ES
dc.description.references Banfi, F. (2021). The evolution of interactivity, immersion and interoperability in HBIM: Digital model uses, VR and AR for built cultural heritage. ISPRS International Journal of Geo-Information, 10(10). https://doi.org/10.3390/ijgi10100685 es_ES
dc.description.references Barazzetti, L., Banfi, F., Brumana, R., & Previtali, M. (2015). Creation of Parametric BIM Objects from Point Clouds Using Nurbs. Photogrammetric Record, 30(152), 339–362. https://doi.org/10.1111/phor.12122 es_ES
dc.description.references Barazzetti, L. (2016). Parametric as-built model generation of complex shapes from point clouds. Advanced Engineering Informatics, 30(3), 298–311. https://doi.org/10.1016/j.aei.2016.03.005 es_ES
dc.description.references Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of scan-to-BIM and FEM for the documentation and analysis of heritage timber roof structures. Lecture Notes in Computer Science, 10058. https://doi.org/10.1007/978-3-319-48496-9_7 es_ES
dc.description.references Bosco, A., D’Andrea, A., Nuzzolo, M., & Zanfagna, P. (2019). A BIM approach for the analysis of an archaeological monument. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W9), 165–172. https://doi.org/10.5194/isprs-archives-XLII-2-W9-165-2019 es_ES
dc.description.references Brumana, R., Della Torre, S., Previtali, M., Barazzetti, L., Cantini, L., Oreni, D., & Banfi, F. (2018). Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): surveying, preservation, site intervention—the Basilica di Collemaggio (L’Aquila). Applied Geomatics, 10(4), 545–567. https://doi.org/10.1007/s12518-018-0233-3 es_ES
dc.description.references Brumana, R., Della Torre, S., Oreni, D., Previtali, M., Cantini, L., Barazzetti, L., … Banfi, F. (2017). HBIM challenge among the paradigm of complexity, tools and preservation: The Basilica di Collemaggio 8 years after the earthquake (L’Aquila). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2W5), 97–104. https://doi.org/10.5194/isprs-archives-XLII-2-W5-97-2017 es_ES
dc.description.references Brumana, R., Oreni, D., Barazzetti, L., Cuca, B., Previtali, M., & Banfi, F. (2020). Survey and scan to BIM model for the knowledge of built heritage and the management of conservation activities. In B. Daniotti, M. Gianinetto, & S. Della Torre (Eds.), Digital Transformation of the Design, Construction and Management Processes of the Built Environment. Research for Development (pp. 391–400). Cham: Springer. https://doi.org/10.1007/978-3-030-33570-0_35 es_ES
dc.description.references Capone, M., & Lanzara, E. (2019). Scan-to-BIM vs 3D ideal model HBIM: parametric tools to study domes geometry. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W9), 219–226. https://doi.org/10.5194/isprs-archives-XLII-2-W9-219-2019 es_ES
dc.description.references Castellano-Román, M., & Pinto-Puerto, F. (2019). Dimensions and levels of knowledge in heritage building information modelling, HBIM: the model of the charterhouse of Jerez (Cádiz, Spain). Digital Applications in Archaeology and Cultural Heritage, 14. https://doi.org/10.1016/j.daach.2019.e00110 es_ES
dc.description.references Chiabrando, F., Lo Turco, M., & Rinaudo, F. (2017). Modeling the decay in an HBIM starting from 3D point clouds. A followed approach for cultural heritage knowledge. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2W5), 605–612. https://doi.org/10.5194/isprs-archives-XLII-2-W5-605-2017 es_ES
dc.description.references Engelmann, H., & Merkelbach, R. (1972). Die Inschhriften von Erythrai und Klazomenai. Bonn: R.Habelt. es_ES
dc.description.references Fredheim, L. H., & Khalaf, M. (2016). The significance of values: heritage value typologies re-examined. International Journal of Heritage Studies, 22(6), 466–481. https://doi.org/10.1080/13527258.2016.1171247 es_ES
dc.description.references Garagnani, S., Gaucci, A., & Gruška, B. (2016). From the archaeological record to archaeobim: the case study of the Etruscan temple of Uni in Marzabotto. Virtual Archaeology Review, 7(15), 77. https://doi.org/10.4995/var.2016.5846 es_ES
dc.description.references ICOMOS. (1990). Charter for The Protection and Management of The Archaeological Heritage. Retrieved February 21, 2021, from International Committee for the Management of Archaeological Heritage (ICAHM) website: https://www.icomos.org/images/DOCUMENTS/Charters/arch_e.pdf es_ES
dc.description.references ICOMOS. (2003). Principles for The Analysis, Conservation and Structural Restoration of Architectural Heritage. Retrieved February 21, 2021, from International Council on Monuments and Sites website: https://www.icomos.org/charters/structures_e.pdf es_ES
dc.description.references Jouan, P., & Hallot, P. (2019). Digital twin: a HBIM-based methodology to support preventive conservation of historic assets through heritage significance awarness. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W15), 609–615. https://doi.org/10.5194/isprs-archives-XLII-2-W15-609-2019 es_ES
dc.description.references Lee, J., Kim, J., Ahn, J., & Woo, W. (2019). Context-aware risk management for architectural heritage using historic building information modeling and virtual reality. Journal of Cultural Heritage, 38, 242–252. https://doi.org/10.1016/j.culher.2018.12.010 es_ES
dc.description.references London Charter. (2009). The London charter for the use of 3-dimensional visualization in the research and communication of cultural heritage. Retrieved February 20, 2022, from http://www.londoncharter.org/fileadmin/templates/main/docs/london_charter_1_1_en.pdf es_ES
dc.description.references Murphy, M., Mcgovern, E., & Pavia, S. (2009). Historic building information modelling (HBIM). Structural Survey, 27(4), 311-327. https://www.emerald.com/insight/content/doi/10.1108/02630800910985108/full/html es_ES
dc.description.references Piegl, L., & Tiller, W. (1997). The NURBs Book. In The NURBS Book. Springer Series. Cham: Springer Science & Business Media. es_ES
dc.description.references Rabbani, T., van den Heuvel, F. , & Vosselman, G. (2006). Segmentation of point clouds using smoothness constraint. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 248–253. Retrieved from http://www.isprs.org/proceedings/XXXVI/part5/paper/RABB_639.pdf es_ES
dc.description.references Sarıcaoğlu, T., & Köşklük Kaya, N. (2020). As-Built Environment Paradata Model Utilized by hBIM. In D. Engin & E. Kızılörenli (Eds.), International Symposium: Architecture, Technology and Innovation (pp. 352–358). İzmir: Yaşar Üniversitesi. es_ES
dc.description.references Sarıcaoğlu, T., & Köşklük Kaya, N. (2021). A combined use of image and range-based data acquisition for the three-dimensional information mapping archaeological heritage. Mersin Photogrammetry Journal, 3(1), 1–9. Retrieved from https://dergipark.org.tr/tr/pub/mephoj/issue/62717/891082 es_ES
dc.description.references Sayão, L. (2016). Digitization of cultural collections: reuse, curation and preservation. IV Seminário Serviços de Informação Em Museus, 245–258. es_ES
dc.description.references Stanish, C. S., & Levy, T. E. (2013). Cyber-archaeology and world cultural heritage: insights from the holy land. Bulletin of the American Academy of Arts and Sciences, 66, 26–33. Retrieved from https://www.amacad.org/multimedia/pdfs/publications/bulletin/spring2013/bulletin_spring2013.pdf es_ES
dc.description.references Sun, Z., & Zhang, Y. (2018). Using drones and 3D modeling to survey Tibetan architectural heritage: A case study with the multi-door stupa. Sustainability (Switzerland), 10(7). https://doi.org/10.3390/su10072259 es_ES
dc.description.references Sztwiertnia, D., Ochałek, A., Tama, A., & Lewińska, P. (2019). HBIM (Heritage Building Information Model) of the Wang Stave Church in Karpacz–case study. International Journal of Architectural Heritage, 15(5), 713–727. https://www.tandfonline.com/doi/full/10.1080/15583058.2019.1645238 es_ES
dc.description.references Tammaro, A. M. (2016). Heritage curation in the digital age: professional challenges and opportunities. International Information & Library Review, 48(2), 122–128. https://doi.org/10.1080/10572317.2016.1176454 es_ES
dc.description.references Tang, P., Huber, D., Akinci, B., Lipman, R., & Lytle, A. (2010). Automatic reconstruction of as-built building information models from laser-scanned point clouds: areview of related techniques. Automation in Construction, 19(7), 829–843. https://doi.org/10.1016/j.autcon.2010.06.007 es_ES
dc.description.references The Seville Principles. (2011). International Principles of Virtual Archaeology The Seville Principles. Retrieved May 2, 2019, from http://smartheritage.com/seville-principles/seville-principles es_ES
dc.description.references Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings - Literature review and future needs. Automation in Construction, 38, 109–127. https://doi.org/10.1016/j.autcon.2013.10.023 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem