- -

Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villavicencio, Eduardo E. es_ES
dc.contributor.author Medina, Katy D. es_ES
dc.contributor.author Loarte, Edwin A. es_ES
dc.contributor.author León, Hairo A. es_ES
dc.coverage.spatial east=-77.5619419; north=-9.3250497; name=Ancash, Perú es_ES
dc.date.accessioned 2022-09-12T11:14:45Z
dc.date.available 2022-09-12T11:14:45Z
dc.date.issued 2022-07-26
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/185804
dc.description.abstract [EN] Rainfall and temperature variables play an important role in understanding meteorology at global and regional scales. However, the availability of meteorological information in areas of complex topography is difficult, as the density of weather stations is often very low. In this study, we focused on improving existing satellite products for these areas, using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) data for rainfall and Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) data for air temperature. Our objective was to propose a model that improves the accuracy and correlation of satellite data with observed data on a monthly scale during 2012-2017. The improvement of rainfall satellite data was performed using 4 regions: region 1 Santa (R1Sn), region 2 Marañón (R2Mr), region 3 Pativilca (R3Pt) and region 4 Pacific (R4Pc). For temperature, a model based on the use of the slope obtained between temperature and altitude data was used. In addition, the reliability of the TRMM, GPM and MERRA-2 data was analyzed based on the ratio of the mean square error, PBIAS, Nash-Sutcliffe efficiency (NSE) and correlation coefficient. The final products obtained from the model for temperature are reliable with R2 ranging from 0.72 to 0.95 for the months of February and August respectively, while the improved rainfall products obtained are shown to be acceptable (NSE≥0.6) for the regions R1Sn, R2Mr and R3Pt. However, in R4Pc it is unacceptable (NSE<0.4), reflecting that the additive model is not suitable in regions with low rainfall values. es_ES
dc.description.abstract [ES] Las variables de precipitación y temperatura desempeñan un papel importante en la comprensión de la meteorología a escala global y regional. Sin embargo, disponer de información meteorológica en zonas de topografía compleja es difícil, ya que la densidad de estaciones meteorológicas suele ser muy baja. En este estudio, nos centramos en mejorar los productos satelitales existentes para estas zonas, empleando datos de la Tropical Rainfall Measuring Mission (TRMM) y Global Precipitation Measurement (GPM) para la precipitación y los datos Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) para la temperatura. Nuestro objetivo fue proponer un modelo que mejore la precisión y la correlación de los datos satelitales con los datos observados a escala mensual durante el 2012-2017. La mejora de los datos satelitales de precipitación se realizó utilizando 4 regiones: región 1 Santa (R1Sn), región 2 Marañón (R2Mr), región 3 Pativilca (R3Pt) y región 4 Pacífico (R4Pc). En la temperatura se utilizó un modelo basado en el uso de la pendiente obtenida entre los datos de temperatura y altitud. Además, se analizó la fiabilidad de los datos TRMM, GPM y el MERRA-2 basándose en la relación del error cuadrático medio, PBIAS, la eficiencia de Nash-Sutcliffe (NSE) y el coeficiente de correlación. Los productos finales obtenidos del modelo para la temperatura son fiables, con R2 entre 0,72 y 0,95 para los meses de febrero y agosto, respectivamente, mientras que los productos mejorados de precipitación obtenidos son aceptables (NSE≥0,6) para las regiones R1Sn, R2Mr y R3Pt. Sin embargo, en R4Pc es inaceptable (NSE<0,4), lo que refleja que el modelo aditivo empleado no es adecuado para regiones con bajos valores de precipitación. es_ES
dc.description.sponsorship The authors acknowledge the financial support from the CONCYTEC - World Bank Project “Improvement and Expansion of the National Science Technology and Technological Innovation System Services”; 8682-PE, through its executing unit FONDECYT [Contract N°23-2018-FONDECYT-BM-IADT-MU] of Permafrost Project and from the Newton-Paulet Fund and the NERC within the framework of the call E031-2018-01-NERC & Glacier Research, through its executing unit FONDECYT [Contract N°08-2019-FONDECYT] of PeruGROWS project. We thank Rafael Tauquino, Ciro Fernández and Ricardo Villanueva for providing the meteorological data from the Center for Environmental Research for Development (CIAD), Santiago Antunez de Mayolo National University (UNASAM). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject TRMM es_ES
dc.subject GPM es_ES
dc.subject MERRA-2 es_ES
dc.subject Weather stations es_ES
dc.subject Ancash es_ES
dc.subject Estaciones meteorológicas es_ES
dc.title Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru es_ES
dc.title.alternative Mejora de los datos satelitales de precipitación y temperatura en áreas con baja disponibilidad de estaciones meteorológicas: caso de estudio en Ancash, Perú es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2022.16907
dc.relation.projectID info:eu-repo/grantAgreement/CONCYTEC//8682-PE/Improvement and Expansion of the National Science Technology and Technological Innovation System Services es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//E031-2018-01 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Villavicencio, EE.; Medina, KD.; Loarte, EA.; León, HA. (2022). Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru. Revista de Teledetección. (60):17-28. https://doi.org/10.4995/raet.2022.16907 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2022.16907 es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 28 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 60 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\16907 es_ES
dc.contributor.funder Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica, Perú es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, Perú es_ES
dc.contributor.funder Natural Environment Research Council, Reino Unido es_ES
dc.contributor.funder World Bank Group es_ES
dc.description.references Aybar, C., Lavado, W., Huerta, A., Fernández, C., Vega, F., Sabino, E., Felipe, O. 2017. Uso del Producto Grillado "PISCO" de precipitación en Estudios, Investigaciones y Sistemas Operacionales de Monitoreo y Pronóstico Hidrometeorológico. In Nota Técnica 001 SENAMHI-DHI-2017 (pp. 1-22). SENAMHI. es_ES
dc.description.references Aybar, C., Fernández, C., Huerta, A., Lavado, W., Vega, F., Felipe-Obando, O. 2019. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal, 65(5), 770-785. https://doi.org/10.1080/02626667.2019.1649411 es_ES
dc.description.references Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N., Santos, A. 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108-121. https://doi.org/10.1016/j.rse.2012.04.024 es_ES
dc.description.references Beniston, M., Diaz, H.F., Bradley, R. 1997. Climatic change at high elevation sites: an overview. Climatic Change, 2, 157-167. https://doi.org/10.1007/978-94-015-8905-5_1 es_ES
dc.description.references Condom, T., Rau, P., Espinoza, J.C. 2011. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007. Hydrological Processes, 25(12), 1924-1933. https://doi.org/10.1002/hyp.7949 es_ES
dc.description.references Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S. 2016. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246-260. https://doi.org/10.1016/j.rser.2015.11.058 es_ES
dc.description.references Endara-Huanca, S.M. 2016. Ciclos Horarios De Precipitación En El Perú Utilizando Información Satelital Dirección. In Servicio Nacional de Meteorología e Hidrología. Servicio Nacional de Meteorología e Hidrología. Available at http://repositorio.senamhi.gob.pe/handle/20.500.12542/112 es_ES
dc.description.references Fernández-Palomino, C.A., Hattermann, F.F., Krysanova, V., Lobanova, A., Vega-Jácome, F., Lavado, W., Santini, W., Aybar, C., Bronstert, A. 2022. A Novel High-Resolution Gridded Precipitation Dataset for Peruvian and Ecuadorian Watersheds: Development and Hydrological Evaluation. Journal of Hydrometeorology, 23(3), 309-336. https://doi.org/10.1175/JHM-D-20-0285.1 es_ES
dc.description.references Franchito, S.H., Rao, V.B., Vasques, A.C., Santo, C.M.E., Conforte, J.C. 2009. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. Journal of Geophysical Research Atmospheres, 114. https://doi.org/10.1029/2007JD009580 es_ES
dc.description.references Fries, A., Rollenbeck, R., Nauß, T., Peters, T., Bendix, J. 2012. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization Andreas. Agricultural and Forest Meteorology, 2012, 17-30. https://doi.org/10.1016/j.agrformet.2011.08.004 es_ES
dc.description.references Garreaud, R., Vuille, M., Clement, A.C. 2003. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1-3), 5-22. https://doi.org/10.1016/S0031-0182(03)00269-4 es_ES
dc.description.references Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., … Zhao, B. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1 es_ES
dc.description.references Georganos, S., Abdi, A.M., Tenenbaum, D.E., & Kalogirou, S. 2017. Examining the NDVIrainfall relationship in the semi-arid Sahel using geographically weighted regression. Journal of Arid Environments, 146, 64-74. https://doi.org/10.1016/j.jaridenv.2017.06.004 es_ES
dc.description.references Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., & Wolff, D.B. 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38-55. https://doi.org/10.1175/JHM560.1 es_ES
dc.description.references Krakauer, N.Y., Pradhanang, S.M., Lakhankar, T., Jha, A.K. 2013. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sensing, 5(8), 4107-4123. https://doi.org/10.3390/rs5084107 es_ES
dc.description.references Lavado-Casimiro, W., Labat, D., Guyot, J.L., Ronchail, J., Ordóñez, J.J. 2009. Validation of rainfall using the TRMM for two Peruvian Amazon basins and its inclusion in monthly water balance models. Revista Peruana Geo-Atmosferica RPGA, 19(1), 11-19. es_ES
dc.description.references Liu, C., Zipser, E.J. 2015. The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letters, 42(9), 3591-3595. https://doi.org/10.1002/2015GL063776 es_ES
dc.description.references Lu, X., Wei, M., Tang, G., Zhang, Y. 2018. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environmental Earth Sciences, 77(5). https://doi.org/10.1007/s12665-018-7378-6 es_ES
dc.description.references Lujano-Laura, E., Felipe-Obando, O.G., Lujano Laura, A., Quispe-Aragón, J. 2015. Validación de la precipitación estimada por satélite TRMM y su aplicación en la modelación hidrológica del río Ramis Puno Perú. Revista Investigaciones Altoandinas - Journal of High Andean Investigation, 17(2), 221. https://doi.org/10.18271/ria.2015.116 es_ES
dc.description.references McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E.B., Sienkiewicz, M., Wargan, K. 2016. MERRA-2 Input Observations: Summary and Assessment. Technical Report Series on Global Modeling and Data Assimilation 46. 46(October), 51. es_ES
dc.description.references Motschmann, A., Huggel, C., Carey, M., Moulton, H., Walker-Crawford, N., Muñoz, R. 2020. Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru. Climatic Change, 162(2), 837-858. https://doi.org/10.1007/s10584-020-02770-x es_ES
dc.description.references Mourre, L., Condom, T., Junquas, C., Lebel, T., E. Sicart, J., Figueroa, R., Cochachin, A. 2016. Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 20(1), 125-141. https://doi.org/10.5194/hess-20-125-2016 es_ES
dc.description.references Ninyerola, M., Pons, X., Roure, J.M. 2000. A methodological approach of climatological modeling of air temperature and precipitation. International Journal of Climatology, 20, 1823-1841. https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B es_ES
dc.description.references Ouatiki, H., Boudhar, A., Tramblay, Y., Jarlan, L., Benabdelouhab, T., Hanich, L., El Meslouhi, M., Chehbouni, A. 2017. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco. Climate, 5(1), 1. https://doi.org/10.3390/cli5010001 es_ES
dc.description.references Quevedo, K., Sánchez, K. 2009. Comparación de dos métodos de interpolación para la estimación de la temperatura del aire aplicando técnicas geoestadísticas. Revista Peruana Geo-Atmosferica, 107(1), 90-107. es_ES
dc.description.references Rau, P., Condom, T. 2010. Análisis espacio temporal de la precipitación en las zonas de montaña de Peru (1998-2007). Revista Peruana Geo Atmosférica, 29(2), 16-29. es_ES
dc.description.references Ritter, A., Muñoz-Carpena, R. 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodnessof-fit assessments. Journal of Hydrology, 480, 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004 es_ES
dc.description.references Vicente-Serrano, S.M., López-Moreno, J.I., Correa, K., Avalos, G., Bazo, J., Azorin-Molina, C., Domínguez-Castro, F., Kenawy, E., Gimeno, L., Nieto, R. 2017. Recent changes in monthly surface air temperature over Peru, 1964-2014. International Journal of Climatology, 38(1), 283-306. https://doi.org/10.1002/joc.5176 es_ES
dc.description.references Zhang, X., Feng, Y., & Chan, R. 2018. Introduction to RClimDex. Climate Research Division Environment Canada, 1-26. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem