Mostrar el registro sencillo del ítem
dc.contributor.author | Villavicencio, Eduardo E. | es_ES |
dc.contributor.author | Medina, Katy D. | es_ES |
dc.contributor.author | Loarte, Edwin A. | es_ES |
dc.contributor.author | León, Hairo A. | es_ES |
dc.coverage.spatial | east=-77.5619419; north=-9.3250497; name=Ancash, Perú | es_ES |
dc.date.accessioned | 2022-09-12T11:14:45Z | |
dc.date.available | 2022-09-12T11:14:45Z | |
dc.date.issued | 2022-07-26 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/185804 | |
dc.description.abstract | [EN] Rainfall and temperature variables play an important role in understanding meteorology at global and regional scales. However, the availability of meteorological information in areas of complex topography is difficult, as the density of weather stations is often very low. In this study, we focused on improving existing satellite products for these areas, using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) data for rainfall and Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) data for air temperature. Our objective was to propose a model that improves the accuracy and correlation of satellite data with observed data on a monthly scale during 2012-2017. The improvement of rainfall satellite data was performed using 4 regions: region 1 Santa (R1Sn), region 2 Marañón (R2Mr), region 3 Pativilca (R3Pt) and region 4 Pacific (R4Pc). For temperature, a model based on the use of the slope obtained between temperature and altitude data was used. In addition, the reliability of the TRMM, GPM and MERRA-2 data was analyzed based on the ratio of the mean square error, PBIAS, Nash-Sutcliffe efficiency (NSE) and correlation coefficient. The final products obtained from the model for temperature are reliable with R2 ranging from 0.72 to 0.95 for the months of February and August respectively, while the improved rainfall products obtained are shown to be acceptable (NSE≥0.6) for the regions R1Sn, R2Mr and R3Pt. However, in R4Pc it is unacceptable (NSE<0.4), reflecting that the additive model is not suitable in regions with low rainfall values. | es_ES |
dc.description.abstract | [ES] Las variables de precipitación y temperatura desempeñan un papel importante en la comprensión de la meteorología a escala global y regional. Sin embargo, disponer de información meteorológica en zonas de topografía compleja es difícil, ya que la densidad de estaciones meteorológicas suele ser muy baja. En este estudio, nos centramos en mejorar los productos satelitales existentes para estas zonas, empleando datos de la Tropical Rainfall Measuring Mission (TRMM) y Global Precipitation Measurement (GPM) para la precipitación y los datos Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) para la temperatura. Nuestro objetivo fue proponer un modelo que mejore la precisión y la correlación de los datos satelitales con los datos observados a escala mensual durante el 2012-2017. La mejora de los datos satelitales de precipitación se realizó utilizando 4 regiones: región 1 Santa (R1Sn), región 2 Marañón (R2Mr), región 3 Pativilca (R3Pt) y región 4 Pacífico (R4Pc). En la temperatura se utilizó un modelo basado en el uso de la pendiente obtenida entre los datos de temperatura y altitud. Además, se analizó la fiabilidad de los datos TRMM, GPM y el MERRA-2 basándose en la relación del error cuadrático medio, PBIAS, la eficiencia de Nash-Sutcliffe (NSE) y el coeficiente de correlación. Los productos finales obtenidos del modelo para la temperatura son fiables, con R2 entre 0,72 y 0,95 para los meses de febrero y agosto, respectivamente, mientras que los productos mejorados de precipitación obtenidos son aceptables (NSE≥0,6) para las regiones R1Sn, R2Mr y R3Pt. Sin embargo, en R4Pc es inaceptable (NSE<0,4), lo que refleja que el modelo aditivo empleado no es adecuado para regiones con bajos valores de precipitación. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support from the CONCYTEC - World Bank Project “Improvement and Expansion of the National Science Technology and Technological Innovation System Services”; 8682-PE, through its executing unit FONDECYT [Contract N°23-2018-FONDECYT-BM-IADT-MU] of Permafrost Project and from the Newton-Paulet Fund and the NERC within the framework of the call E031-2018-01-NERC & Glacier Research, through its executing unit FONDECYT [Contract N°08-2019-FONDECYT] of PeruGROWS project. We thank Rafael Tauquino, Ciro Fernández and Ricardo Villanueva for providing the meteorological data from the Center for Environmental Research for Development (CIAD), Santiago Antunez de Mayolo National University (UNASAM). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | TRMM | es_ES |
dc.subject | GPM | es_ES |
dc.subject | MERRA-2 | es_ES |
dc.subject | Weather stations | es_ES |
dc.subject | Ancash | es_ES |
dc.subject | Estaciones meteorológicas | es_ES |
dc.title | Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru | es_ES |
dc.title.alternative | Mejora de los datos satelitales de precipitación y temperatura en áreas con baja disponibilidad de estaciones meteorológicas: caso de estudio en Ancash, Perú | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2022.16907 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CONCYTEC//8682-PE/Improvement and Expansion of the National Science Technology and Technological Innovation System Services | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//E031-2018-01 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Villavicencio, EE.; Medina, KD.; Loarte, EA.; León, HA. (2022). Improved rainfall and temperature satellite dataset in areas with scarce weather stations data: case study in Ancash, Peru. Revista de Teledetección. (60):17-28. https://doi.org/10.4995/raet.2022.16907 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2022.16907 | es_ES |
dc.description.upvformatpinicio | 17 | es_ES |
dc.description.upvformatpfin | 28 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 60 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\16907 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica, Perú | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica, Perú | es_ES |
dc.contributor.funder | Natural Environment Research Council, Reino Unido | es_ES |
dc.contributor.funder | World Bank Group | es_ES |
dc.description.references | Aybar, C., Lavado, W., Huerta, A., Fernández, C., Vega, F., Sabino, E., Felipe, O. 2017. Uso del Producto Grillado "PISCO" de precipitación en Estudios, Investigaciones y Sistemas Operacionales de Monitoreo y Pronóstico Hidrometeorológico. In Nota Técnica 001 SENAMHI-DHI-2017 (pp. 1-22). SENAMHI. | es_ES |
dc.description.references | Aybar, C., Fernández, C., Huerta, A., Lavado, W., Vega, F., Felipe-Obando, O. 2019. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal, 65(5), 770-785. https://doi.org/10.1080/02626667.2019.1649411 | es_ES |
dc.description.references | Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N., Santos, A. 2012. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108-121. https://doi.org/10.1016/j.rse.2012.04.024 | es_ES |
dc.description.references | Beniston, M., Diaz, H.F., Bradley, R. 1997. Climatic change at high elevation sites: an overview. Climatic Change, 2, 157-167. https://doi.org/10.1007/978-94-015-8905-5_1 | es_ES |
dc.description.references | Condom, T., Rau, P., Espinoza, J.C. 2011. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007. Hydrological Processes, 25(12), 1924-1933. https://doi.org/10.1002/hyp.7949 | es_ES |
dc.description.references | Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S. 2016. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renewable and Sustainable Energy Reviews, 56, 246-260. https://doi.org/10.1016/j.rser.2015.11.058 | es_ES |
dc.description.references | Endara-Huanca, S.M. 2016. Ciclos Horarios De Precipitación En El Perú Utilizando Información Satelital Dirección. In Servicio Nacional de Meteorología e Hidrología. Servicio Nacional de Meteorología e Hidrología. Available at http://repositorio.senamhi.gob.pe/handle/20.500.12542/112 | es_ES |
dc.description.references | Fernández-Palomino, C.A., Hattermann, F.F., Krysanova, V., Lobanova, A., Vega-Jácome, F., Lavado, W., Santini, W., Aybar, C., Bronstert, A. 2022. A Novel High-Resolution Gridded Precipitation Dataset for Peruvian and Ecuadorian Watersheds: Development and Hydrological Evaluation. Journal of Hydrometeorology, 23(3), 309-336. https://doi.org/10.1175/JHM-D-20-0285.1 | es_ES |
dc.description.references | Franchito, S.H., Rao, V.B., Vasques, A.C., Santo, C.M.E., Conforte, J.C. 2009. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. Journal of Geophysical Research Atmospheres, 114. https://doi.org/10.1029/2007JD009580 | es_ES |
dc.description.references | Fries, A., Rollenbeck, R., Nauß, T., Peters, T., Bendix, J. 2012. Near surface air humidity in a megadiverse Andean mountain ecosystem of southern Ecuador and its regionalization Andreas. Agricultural and Forest Meteorology, 2012, 17-30. https://doi.org/10.1016/j.agrformet.2011.08.004 | es_ES |
dc.description.references | Garreaud, R., Vuille, M., Clement, A.C. 2003. The climate of the Altiplano: Observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1-3), 5-22. https://doi.org/10.1016/S0031-0182(03)00269-4 | es_ES |
dc.description.references | Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., … Zhao, B. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. https://doi.org/10.1175/JCLI-D-16-0758.1 | es_ES |
dc.description.references | Georganos, S., Abdi, A.M., Tenenbaum, D.E., & Kalogirou, S. 2017. Examining the NDVIrainfall relationship in the semi-arid Sahel using geographically weighted regression. Journal of Arid Environments, 146, 64-74. https://doi.org/10.1016/j.jaridenv.2017.06.004 | es_ES |
dc.description.references | Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., & Wolff, D.B. 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38-55. https://doi.org/10.1175/JHM560.1 | es_ES |
dc.description.references | Krakauer, N.Y., Pradhanang, S.M., Lakhankar, T., Jha, A.K. 2013. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sensing, 5(8), 4107-4123. https://doi.org/10.3390/rs5084107 | es_ES |
dc.description.references | Lavado-Casimiro, W., Labat, D., Guyot, J.L., Ronchail, J., Ordóñez, J.J. 2009. Validation of rainfall using the TRMM for two Peruvian Amazon basins and its inclusion in monthly water balance models. Revista Peruana Geo-Atmosferica RPGA, 19(1), 11-19. | es_ES |
dc.description.references | Liu, C., Zipser, E.J. 2015. The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letters, 42(9), 3591-3595. https://doi.org/10.1002/2015GL063776 | es_ES |
dc.description.references | Lu, X., Wei, M., Tang, G., Zhang, Y. 2018. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environmental Earth Sciences, 77(5). https://doi.org/10.1007/s12665-018-7378-6 | es_ES |
dc.description.references | Lujano-Laura, E., Felipe-Obando, O.G., Lujano Laura, A., Quispe-Aragón, J. 2015. Validación de la precipitación estimada por satélite TRMM y su aplicación en la modelación hidrológica del río Ramis Puno Perú. Revista Investigaciones Altoandinas - Journal of High Andean Investigation, 17(2), 221. https://doi.org/10.18271/ria.2015.116 | es_ES |
dc.description.references | McCarty, W., Coy, L., Gelaro, R., Huang, A., Merkova, D., Smith, E.B., Sienkiewicz, M., Wargan, K. 2016. MERRA-2 Input Observations: Summary and Assessment. Technical Report Series on Global Modeling and Data Assimilation 46. 46(October), 51. | es_ES |
dc.description.references | Motschmann, A., Huggel, C., Carey, M., Moulton, H., Walker-Crawford, N., Muñoz, R. 2020. Losses and damages connected to glacier retreat in the Cordillera Blanca, Peru. Climatic Change, 162(2), 837-858. https://doi.org/10.1007/s10584-020-02770-x | es_ES |
dc.description.references | Mourre, L., Condom, T., Junquas, C., Lebel, T., E. Sicart, J., Figueroa, R., Cochachin, A. 2016. Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 20(1), 125-141. https://doi.org/10.5194/hess-20-125-2016 | es_ES |
dc.description.references | Ninyerola, M., Pons, X., Roure, J.M. 2000. A methodological approach of climatological modeling of air temperature and precipitation. International Journal of Climatology, 20, 1823-1841. https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B | es_ES |
dc.description.references | Ouatiki, H., Boudhar, A., Tramblay, Y., Jarlan, L., Benabdelouhab, T., Hanich, L., El Meslouhi, M., Chehbouni, A. 2017. Evaluation of TRMM 3B42 V7 Rainfall Product over the Oum Er Rbia Watershed in Morocco. Climate, 5(1), 1. https://doi.org/10.3390/cli5010001 | es_ES |
dc.description.references | Quevedo, K., Sánchez, K. 2009. Comparación de dos métodos de interpolación para la estimación de la temperatura del aire aplicando técnicas geoestadísticas. Revista Peruana Geo-Atmosferica, 107(1), 90-107. | es_ES |
dc.description.references | Rau, P., Condom, T. 2010. Análisis espacio temporal de la precipitación en las zonas de montaña de Peru (1998-2007). Revista Peruana Geo Atmosférica, 29(2), 16-29. | es_ES |
dc.description.references | Ritter, A., Muñoz-Carpena, R. 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodnessof-fit assessments. Journal of Hydrology, 480, 33-45. https://doi.org/10.1016/j.jhydrol.2012.12.004 | es_ES |
dc.description.references | Vicente-Serrano, S.M., López-Moreno, J.I., Correa, K., Avalos, G., Bazo, J., Azorin-Molina, C., Domínguez-Castro, F., Kenawy, E., Gimeno, L., Nieto, R. 2017. Recent changes in monthly surface air temperature over Peru, 1964-2014. International Journal of Climatology, 38(1), 283-306. https://doi.org/10.1002/joc.5176 | es_ES |
dc.description.references | Zhang, X., Feng, Y., & Chan, R. 2018. Introduction to RClimDex. Climate Research Division Environment Canada, 1-26. | es_ES |