- -

Some generalizations for mixed multivalued mappings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some generalizations for mixed multivalued mappings

Mostrar el registro completo del ítem

Aslantaş, M.; Sahin, H.; Sadullah, U. (2022). Some generalizations for mixed multivalued mappings. Applied General Topology. 23(1):169-178. https://doi.org/10.4995/agt.2022.15214

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185805

Ficheros en el ítem

Metadatos del ítem

Título: Some generalizations for mixed multivalued mappings
Autor: Aslantaş, Mustafa Sahin, Hakan Sadullah, Ugur
Fecha difusión:
Resumen:
[EN] In this paper, we first introduce a new concept of KW-type m-contraction mapping. Then, we obtain some fixed point results for these mappings on M-metric spaces. Thus, we extend many well-known results for both single ...[+]
Palabras clave: Fixed point , Mixed multivalued mapping , M-metric space , Pompeiu-Hausdorff metric
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2022.15214
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2022.15214
Tipo: Artículo

References

M. Abbas and T. Nazir, Fixed point of generalized weakly contractive mappings in ordered partial metric spaces, Fixed Point Theory and Applications 2012, no. 1 (2012), 1-19.

https://doi.org/10.1186/1687-1812-2012-1

N. Alamgir, Q. Kiran, H. Aydi and Y. U. Gaba, Fuzzy fixed point results of generalized almost F-contractions in controlled metric spaces, Adv. Differ. Equ. 2021 (2021): 476. [+]
M. Abbas and T. Nazir, Fixed point of generalized weakly contractive mappings in ordered partial metric spaces, Fixed Point Theory and Applications 2012, no. 1 (2012), 1-19.

https://doi.org/10.1186/1687-1812-2012-1

N. Alamgir, Q. Kiran, H. Aydi and Y. U. Gaba, Fuzzy fixed point results of generalized almost F-contractions in controlled metric spaces, Adv. Differ. Equ. 2021 (2021): 476.

https://doi.org/10.1186/s13662-021-03598-0

I. Altun, H. Sahin and D. Turkoglu, Caristi-type fixed point theorems and some generalizations on M-metric space, Bul. Mal. Math. Sci. Soc. 43, no. 3 (2020), 2647-2657.

https://doi.org/10.1007/s40840-019-00823-8

I. Altun, H. Sahin and D. Turkoglu, Fixed point results for multivalued mappings of Feng-Liu type on M-metric spaces, J. Non. Funct. Anal. 2018 (2018), 1-8.

https://doi.org/10.23952/jnfa.2018.7

I. Altun, F. Sola and H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157, no. 18 (2010), 2778-2785.

https://doi.org/10.1016/j.topol.2010.08.017

M. Asadi, E. Karapınar and P. Salimi, New extension of p-metric spaces with some fixed point results on M-metric spaces, J. Ine. Appl. 2014 (2014), 18.

https://doi.org/10.1186/1029-242X-2014-18

S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3 (1922), 133-181.

https://doi.org/10.4064/fm-3-1-133-181

L. Ćirić, B. Samet, H. Aydi and C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, App. Math. and Comp. 218, no. 6 (2011), 2398-2406.

https://doi.org/10.1016/j.amc.2011.07.005

Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multivalued Caristi type mappings, J. Math. Anal. Appl. 317 (2006), 103-112.

https://doi.org/10.1016/j.jmaa.2005.12.004

Y. U. Gaba, M. Aphane and V. Sihag, On two Banach-type fixed points in bipolar metric spaces, Abstract and Applied Analysis 2021 (2021), 1-10.

https://doi.org/10.1155/2021/4846877

Y. U. Gaba and E. Karapınar, A new approach to the interpolative contractions, Axioms 8, no. 4 (2019): 110.

https://doi.org/10.3390/axioms8040110

Z. Kadelburg and S. Radenovic, Fixed point and tripled fixed point theorems under Pata-type conditions in ordered metric spaces, Inter. J. of Anal. and Appl. 6 (2014), 113-122. [23]

D. Klim and D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl. 334, no. 1 (2007), 132-139.

https://doi.org/10.1016/j.jmaa.2006.12.012

S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences-Paper Edition 728 (1994), 183-197.

https://doi.org/10.1111/j.1749-6632.1994.tb44144.x

N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141, no. 1 (1989), 177-188.

https://doi.org/10.1016/0022-247X(89)90214-X

N. Mlaiki, K. Abodayeh, H. Aydi, T. Abdeljawad and M. Abuloha, Rectangular metric-like type spaces and related fixed points, Journal of Mathematics 2018 (2018), 1-8.

https://doi.org/10.1155/2018/3581768

S. B. Nadler, Multi-valued contraction mappings, Pacific Journal of Mathematics 30, no. 2 (1969), 475-488.

https://doi.org/10.2140/pjm.1969.30.475

N. Y. Özgür, N. Mlaiki, N. Taş and N. Souayah, A new generalization of metric spaces: rectangular M-metric spaces, Mathematical Sciences 12, no. 3 (2018), 223-233.

https://doi.org/10.1007/s40096-018-0262-4

S. Reich, Fixed points of contractive functions, Boll. Unione Mat. Ital. 5 (1972), 26-42. [40]

S. Reich, Some problems and results in fixed point theory, Contemp. Math. 21 (1983), 179-187.

https://doi.org/10.1090/conm/021/729515

S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory and Applications 2010 (2009): 493298.

https://doi.org/10.1155/2010/493298

S. Romaguera, On Nadler's fixed point theorem for partial metric spaces, Mathematical Sciences and Applications E-Notes 1, no. 1 (2013), 1-8.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem