- -

In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor

Mostrar el registro completo del ítem

García-Laínez, G.; Vayá Pérez, I.; Marín, MP.; Miranda Alonso, MÁ.; Andreu Ros, MI. (2021). In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Archives of Toxicology. 95(1):169-178. https://doi.org/10.1007/s00204-020-02880-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/185957

Ficheros en el ítem

Metadatos del ítem

Título: In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor
Autor: García-Laínez, G. Vayá Pérez, Ignacio Marín, Mª Pilar Miranda Alonso, Miguel Ángel Andreu Ros, María Inmaculada
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The epidermal growth factor receptors EGFR and HER2 are the main targets for tyrosine kinase inhibitors (TKIs). The quinazoline derivative lapatinib (LAP) is used since 2007 as dual TKI in the treatment of metastatic ...[+]
Palabras clave: Anticancer drug , Cellular phototoxicity , DNA damage , Metabolites , Protein photooxidation
Derechos de uso: Reconocimiento (by)
Fuente:
Archives of Toxicology. (issn: 0340-5761 )
DOI: 10.1007/s00204-020-02880-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00204-020-02880-6
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89416-R/ES/FUNCIONALIZACION DE NANOPARTICULAS DE ORO CON MARCADORES BIOLOGICOS Y SENSIBILIZADORES DE OXIGENO SINGLETE PARA SU USO EN BIOMEDICINA/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-89416-R/ES/FUNCIONALIZACION DE NANOPARTICULAS DE ORO CON MARCADORES BIOLOGICOS Y SENSIBILIZADORES DE OXIGENO SINGLETE PARA SU USO EN BIOMEDICINA/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F075//REACCIONES FOTOQUIMICAS DE BIOMOLECULAS./
info:eu-repo/grantAgreement/MINECO//CPII16%2F00052/ES/CPII16%2F00052/
info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/
info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0030/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/
info:eu-repo/grantAgreement/MINECO//RYC-2015-17737/ES/RYC-2015-17737/
[-]
Agradecimientos:
This study was funded by the Carlos III Institute (ISCIII) of Health (Grants: PI16/01877, CPII16/00052, ARADyAL RD16/0006/0030) co-funded by European Regional Development Fund, the Spanish Government (RYC-2015-17737, ...[+]
Tipo: Artículo

References

Abo-Zeid MAM, Abo-Elfadl MT, Gamal-Eldeen AM (2019) Evaluation of lapatinib cytotoxicity and genotoxicity on MDA-MB-231 breast cancer cell line. Environ Toxicol Pharmacol 71:103207. https://doi.org/10.1016/j.etap.2019.103207

Agundez JAG, Garcia-Martin E, Garcia-Lainez G, Miranda MA, Andreu I (2020) Photomutagenicity of chlorpromazine and its N-demethylated metabolites assessed by NGS. Sci Rep 10(1):6879. https://doi.org/10.1038/s41598-020-63651-y

Cadet J, Davies KJA (2017) Oxidative DNA damage and repair: an introduction. Free Radic Biol Med 107:2–12. https://doi.org/10.1016/j.freeradbiomed.2017.03.030 [+]
Abo-Zeid MAM, Abo-Elfadl MT, Gamal-Eldeen AM (2019) Evaluation of lapatinib cytotoxicity and genotoxicity on MDA-MB-231 breast cancer cell line. Environ Toxicol Pharmacol 71:103207. https://doi.org/10.1016/j.etap.2019.103207

Agundez JAG, Garcia-Martin E, Garcia-Lainez G, Miranda MA, Andreu I (2020) Photomutagenicity of chlorpromazine and its N-demethylated metabolites assessed by NGS. Sci Rep 10(1):6879. https://doi.org/10.1038/s41598-020-63651-y

Cadet J, Davies KJA (2017) Oxidative DNA damage and repair: an introduction. Free Radic Biol Med 107:2–12. https://doi.org/10.1016/j.freeradbiomed.2017.03.030

Castellino S, O'Mara M, Koch K, Borts DJ, Bowers GD, MacLauchlin C (2012) Human metabolism of lapatinib, a dual kinase inhibitor: implications for hepatotoxicity. Drug Metab Dispos 40(1):139–150. https://doi.org/10.1124/dmd.111.040949

Ding J, Yao Y, Huang G et al (2020) Targeting the EphB4 receptor tyrosine kinase sensitizes HER2-positive breast cancer cells to Lapatinib. Cancer Lett 475:53–64. https://doi.org/10.1016/j.canlet.2020.01.032

Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

Frenel JS, Bourbouloux E, Berton-Rigaud D, Sadot-Lebouvier S, Zanetti A, Campone M (2009) Lapatinib in metastatic breast cancer. Womens Health (Lond) 5(6):603–612. https://doi.org/10.2217/whe.09.54

Garcia-Lainez G, Martinez-Reig AM, Limones-Herrero D, Consuelo Jimenez M, Miranda MA, Andreu I (2018) Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicol Appl Pharmacol 341:51–55. https://doi.org/10.1016/j.taap.2018.01.005

Gavilá J, De La Haba J, Bermejo B et al (2020) A retrospective, multicenter study of the efficacy of lapatinib plus trastuzumab in HER2-positive metastatic breast cancer patients previously treated with trastuzumab, lapatinib, or both: the Trastyvere study. Clin Transl Oncol 22(3):420–428. https://doi.org/10.1007/s12094-019-02145-4

Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355(26):2733–2743. https://doi.org/10.1056/NEJMoa064320

Gomez HL, Doval DC, Chavez MA et al (2008) Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. J Clin Oncol 26(18):2999–3005. https://doi.org/10.1200/JCO.2007.14.0590

Heppt MV, Clanner-Engelshofen BM, Marsela E et al (2020) Comparative analysis of the phototoxicity induced by BRAF inhibitors and alleviation through antioxidants. Photodermatol Photoimmunol Photomed 36(2):126–134. https://doi.org/10.1111/phpp.12520

Higa GM, Abraham J (2007) Lapatinib in the treatment of breast cancer. Expert Rev Anticancer Ther 7(9):1183–1192. https://doi.org/10.1586/14737140.7.9.1183

Huijberts S, van Geel R, van Brummelen EMJ et al (2020) Phase I study of lapatinib plus trametinib in patients with KRAS-mutant colorectal, non-small cell lung, and pancreatic cancer. Cancer Chemother Pharmacol 85(5):917–930. https://doi.org/10.1007/s00280-020-04066-4

Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S (2016) Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. J Photochem Photobiol B 160:229–239. https://doi.org/10.1016/j.jphotobiol.2016.04.005

Kopper L (2008) Lapatinib: a sword with two edges. Pathol Oncol Res 14(1):1–8. https://doi.org/10.1007/s12253-008-9018-z

Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A (2015) Cutaneous adverse effects of targeted therapies: Part I: Inhibitors of the cellular membrane. J Am Acad Dermatol 72(2):203–218. https://doi.org/10.1016/j.jaad.2014.07.032

Medina PJ, Goodin S (2008) Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther 30(8):1426–1447. https://doi.org/10.1016/j.clinthera.2008.08.008

Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65(2):229–235. https://doi.org/10.1021/j100820a009

Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19(56):6550–6565. https://doi.org/10.1038/sj.onc.1204082

Moon JY, Han JM, Seo I, Gwak HS (2019) Risk factors associated with the incidence and time to onset of lapatinib-induced hepatotoxicity. Breast Cancer Res Treat 178(1):239–244. https://doi.org/10.1007/s10549-019-05382-x

Nolting M, Schneider-Merck T, Trepel M (2014) Lapatinib. Recent Results Cancer Res 201:125–143. https://doi.org/10.1007/978-3-642-54490-3_7

OECD (2004) OECD Guidelines for the Testing of Chemicals Test No. 432: In Vitro 3T3 NRU Phototoxicity Test. https://doi.org/10.1787/20745788

Palumbo F, Garcia-Lainez G, Limones-Herrero D et al (2016) Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicol Appl Pharmacol 313:131–137. https://doi.org/10.1016/j.taap.2016.10.024

Parham LR, Briley LP, Li L et al (2016) Comprehensive genome-wide evaluation of lapatinib-induced liver injury yields a single genetic signal centered on known risk allele HLA-DRB1*07:01. Pharmacogenomics J 16(2):180–185. https://doi.org/10.1038/tpj.2015.40

Rayane Mohamed FS, Sidibe J, Bararpour N, Desmeules J, Ausburger M, Daali Y, Thomas A (2018) Detection and identification of reactive drug metabolites leading to idiosyncratic toxicity: lapatinib as a case example. J Drug Metab Toxicol 9(3):1–6. https://doi.org/10.4172/2157-7609.1000242

Schroeder RL, Stevens CL, Sridhar J (2014) Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules 19(9):15196–15212. https://doi.org/10.3390/molecules190915196

Spector N, Xia W, El-Hariry I, Yarden Y, Bacus S (2007) HER2 therapy. Small molecule HER-2 tyrosine kinase inhibitors. Breast Cancer Res 9(2):205. https://doi.org/10.1186/bcr1652

Spraggs CF, Budde LR, Briley LP et al (2011) HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29(6):667–673. https://doi.org/10.1200/jco.2010.31.3197

Tokura Y, Ogai M, Yagi H, Takigawa M (1994) Afloqualone photosensitivity: immunogenicity of afloqualone-photomodified epidermal cells. Photochem Photobiol 60(3):262–267. https://doi.org/10.1111/j.1751-1097.1994.tb05102.x

Towles JK, Clark RN, Wahlin MD, Uttamsingh V, Rettie AE, Jackson KD (2016) Cytochrome P450 3A4 and CYP3A5-catalyzed bioactivation of lapatinib. Drug Metab Dispos 44(10):1584–1597. https://doi.org/10.1124/dmd.116.070839

Wang H (2014) Lapatinib for the treatment of breast cancer in the People’s Republic of China. Onco Targets Ther 7:1367–1373. https://doi.org/10.2147/OTT.S60586

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem