Mostrar el registro sencillo del ítem
dc.contributor.author | Garnes-Portoles, Francisco | es_ES |
dc.contributor.author | Greco, Rossella | es_ES |
dc.contributor.author | Oliver-Meseguer, Judit | es_ES |
dc.contributor.author | Castellanos-Soriano, Jorge | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.contributor.author | Lopez-Haro, Miguel | es_ES |
dc.contributor.author | Hernández-Garrido, Juan Carlos | es_ES |
dc.contributor.author | Boronat Zaragoza, Mercedes | es_ES |
dc.contributor.author | Pérez-Ruiz, Raúl | es_ES |
dc.contributor.author | Leyva Perez, Antonio | es_ES |
dc.date.accessioned | 2022-09-13T18:02:58Z | |
dc.date.available | 2022-09-13T18:02:58Z | |
dc.date.issued | 2021-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/185960 | |
dc.description.abstract | [EN] The palladium-catalysed cross-coupling reaction between alkenes and aryl halides (the Mizoroki-Heck reaction) is a powerful methodology to construct new carbon-carbon bonds. However, the success of this reaction is in part hampered by an extremely marked regioselectivity on the double bond, which dictates that electron-poor alkenes react exclusively on the beta-carbon. Here, we show that ligand-free, few-atom palladium clusters in solution catalyse the alpha-selective intramolecular Mizoroki-Heck coupling of iodoaryl cinnamates, and mechanistic studies support the formation of a sterically encumbered cinnamate-palladium cluster intermediate. Following this rationale, the alpha-selective intermolecular coupling of aryl iodides with styrenes is also achieved with palladium clusters encapsulated within fine-tuned and sterically restricted zeolite cavities to produce 1,1-bisarylethylenes, which are further engaged with aryl halides by a metal-free photoredox-catalysed coupling. These ligand-free methodologies significantly expand the chemical space of the Mizoroki-Heck coupling. | es_ES |
dc.description.sponsorship | This work was supported by MINECO (Spain, projects CTQ 2017-86735-P, PID2019-105391GB-C22 and MAT2017-82288-C2-1-P, Severo Ochoa programme SEV-2016-0683 and the Juan de la Cierva programme). F.G.-P. and R.G. thank ITQ for the concession of a contract. J.O.-M. acknowledges the Juan de la Cierva programme for the concession of a contract, and R.P.-R. and J.C.-S. thank the Plan GenT programme (CIDEGENT/2018/044) funded by Generalitat Valenciana. HR STEM measurements were performed at DME-UCA in Cadiz University, with financial support from FEDER/MINECO (PID2019-110018GA-I00 and PID2019-107578GA-I00). We acknowledge ALBA Synchrotron for allocating beamtime and CL AE SS beamline staff for their technical support during our experiment. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Regioirregular and catalytic Mizoroki-Heck reactions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41929-021-00592-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-86735-P/ES/CATALISIS CON ATOMOS METALICOS AISLADOS Y CLUSTERES ULTRAPEQUEÑOS BIEN DEFINIDOS, SIN LIGANDOS Y CONFINADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//AYUDA CIDEGENT CONTRATACION RAUL PEREZ RUIZ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105391GB-C22/ES/DESARROLLO DE NUEVOS SISTEMAS DE CONVERSION BIFOTONICA A MAYOR FRECUENCIA BASADOS EN ANIQUILACION TRIPLETE-TRIPLETE PARA FOTOCATALISIS REDOX CON LUZ VISIBLE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//PHOTON UPCONVERSION REDOX CATALYSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107578GA-I00/ES/COMBINACION DE PLASMONICA Y CATALISIS PARA EL DESARROLLO DE NANOESTRUCTURAS BASADAS EN MOS2 PARA APLICACIONES DE ENERGIA LIMPIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110018GA-I00/ES/HACIA CATALIZADORES HOMO Y HETERO DIATOMICOS DE AU-PD SOPORTADOS SOBRE OXIDOS: SINTEIS, CATACTERIZACION ATOMICA Y ACTIVIDAD EN LA REACCION DE OXIDACION SELECTIVA DE ALCOHOLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Garnes-Portoles, F.; Greco, R.; Oliver-Meseguer, J.; Castellanos-Soriano, J.; Jiménez Molero, MC.; Lopez-Haro, M.; Hernández-Garrido, JC.... (2021). Regioirregular and catalytic Mizoroki-Heck reactions. Nature Catalysis. 4(4):293-303. https://doi.org/10.1038/s41929-021-00592-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41929-021-00592-3 | es_ES |
dc.description.upvformatpinicio | 293 | es_ES |
dc.description.upvformatpfin | 303 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2520-1158 | es_ES |
dc.relation.pasarela | S\437882 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio Ciencia, Innovación y Universidades | es_ES |
dc.contributor.funder | MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Phan, N. T. S., Van Der Sluys, M. & Jones, C. W. On the nature of the active species in palladium catalysed Mizoroki–Heck and Suzuki–Miyaura couplings—homogeneous or heterogeneous catalysis, a critical review. Adv. Synth. Catal. 348, 609–679 (2006). | es_ES |
dc.description.references | Mo, J. & Xiao, J. The Heck reaction of electron-rich olefins with regiocontrol by hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 4152–4157 (2006). | es_ES |
dc.description.references | Wucher, P. et al. Breaking the regioselectivity rule for acrylate insertion in the Mizoroki–Heck reaction. Proc. Natl Acad. Sci. USA 108, 8955–8959 (2011). | es_ES |
dc.description.references | Barluenga, J., Moriel, P., Valdés, C. & Aznar, F. N. Tosylhydrazones as reagents for cross-coupling reactions: a route to polysubstituted olefins. Angew. Chem. Int. Ed. 46, 5587–5590 (2007). | es_ES |
dc.description.references | Zou, Y. et al. Selective arylation and vinylation at the α position of vinylarenes. Chem. Eur. J. 19, 3504–3511 (2013). | es_ES |
dc.description.references | Tang, J., Hackenberger, D. & Goossen, L. J. Branched arylalkenes from cinnamates: selectivity inversion in Heck reactions by carboxylates as deciduous directing groups. Angew. Chem. Int. Ed. 55, 11296–11299 (2016). | es_ES |
dc.description.references | Sullivan, R. J., Freure, G. P. R. & Newman, S. G. Overcoming scope limitations in cross-coupling of diazo nucleophiles by manipulating catalyst speciation and using flow diazo generation. ACS Catal. 9, 5623–5630 (2019). | es_ES |
dc.description.references | Nakashima, Y., Hirata, G., Sheppard, T. D. & Nishikata, T. The Mizoroki–Heck reaction with internal olefins: reactivities and stereoselectivities. Asian J. Org. Chem. 9, 480–491 (2020). | es_ES |
dc.description.references | Torborg, C. & Beller, M. Recent applications of palladium-catalysed coupling reactions in the pharmaceutical, agrochemical and fine chemical industries. Adv. Synth. Catal. 351, 3027–3043 (2009). | es_ES |
dc.description.references | Dounay, A. B. & Overman, L. E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 103, 2945–2963 (2003). | es_ES |
dc.description.references | Tsvelikhovsky, D. & Buchwald, S. L. Synthesis of heterocycles via Pd-ligand controlled cyclization of 2-chloro-N-(2-vinyl)aniline: preparation of carbazoles, indoles, dibenzazepines and acridines. J. Am. Chem. Soc. 132, 14048–14051 (2010). | es_ES |
dc.description.references | Wu, X.-F., Anbarasan, P., Neumann, H. & Beller, M. From noble metal to Nobel prize: palladium-catalysed coupling reactions as key methods in organic synthesis. Angew. Chem. Int. Ed. 49, 9047–9050 (2010). | es_ES |
dc.description.references | Beletskaya, I. P. & Cheprakov, A. V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000). | es_ES |
dc.description.references | Weng, S.-S., Ke, C.-S., Chen, F.-K., Lyu, Y.-F. & Lin, G.-Y. Transesterification catalysed by iron(iii) β-diketonate species. Tetrahedron 67, 1640–1648 (2011). | es_ES |
dc.description.references | Nájera, C. Oxime-derived palladacycles: applications in catalysis. ChemCatChem 8, 1865–1881 (2016). | es_ES |
dc.description.references | Leyva-Pérez, A., Oliver-Meseguer, J., Rubio-Marqués, P. & Corma, A. Water-stabilized three- and four-atom palladium clusters as highly active catalytic species in ligand-free C–C cross-coupling reactions. Angew. Chem. Int. Ed. 52, 11554–11559 (2013). | es_ES |
dc.description.references | Zhu, F., Li, Y., Wang, Z. & Wu, X.-F. Iridium-catalysed carbonylative synthesis of chromenones from simple phenols and internal alkynes at atmospheric pressure. Angew. Chem. Int. Ed. 55, 14151–14154 (2016). | es_ES |
dc.description.references | Li, X. et al. Palladium-catalysed enantioselective intramolecular dearomative Heck reaction. J. Am. Chem. Soc. 140, 13945–13951 (2018). | es_ES |
dc.description.references | Fernández, E. et al. Base-controlled Heck, Suzuki and Sonogashira reactions catalysed by ligand-free platinum or palladium single atom and sub-nanometer clusters. J. Am. Chem. Soc. 141, 1928–1940 (2019). | es_ES |
dc.description.references | Sperger, T., Stirner, C. K. & Schoenebeck, F. Bench-stable and recoverable palladium(i) dimer as an efficient catalyst for Heck cross-coupling. Synthesis 49, 115–120 (2017). | es_ES |
dc.description.references | Fortea-Pérez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017). | es_ES |
dc.description.references | von Schenck, H., Åkermark, B. & Svensson, M. Electronic control of the regiochemistry in the Heck reaction. J. Am. Chem. Soc. 125, 3503–3508 (2003). | es_ES |
dc.description.references | Deeth, R. J., Smith, A. & Brown, J. M. Electronic control of the regiochemistry in palladium-phosphine catalysed intermolecular Heck reactions. J. Am. Chem. Soc. 126, 7144–7151 (2004). | es_ES |
dc.description.references | Djakovitch, L. & Koehler, K. Heck reaction catalysed by Pd-modified zeolites. J. Am. Chem. Soc. 123, 5990–5999 (2001). | es_ES |
dc.description.references | Dams, M. et al. Pd-zeolites as heterogeneous catalysts in Heck chemistry. J. Catal. 209, 225–236 (2002). | es_ES |
dc.description.references | Marqués, P., Rivero-Crespo, M. A., Leyva-Pérez, A. & Corma, A. Well-defined noble metal single sites in zeolites as an alternative to catalysis by insoluble metal salts. J. Am. Chem. Soc. 137, 11832–11837 (2015). | es_ES |
dc.description.references | Corma, A., García, H., Leyva, A. & Primo, A. Basic zeolites containing palladium as bifunctional heterogeneous catalysts for the Heck reaction. Appl. Catal. A 247, 41–49 (2003). | es_ES |
dc.description.references | Sun, T., Seff, K., Heo, N. H. & Petranovskii, V. P. A cationic cesium continuum in zeolite X. Science 259, 495–497 (1993). | es_ES |
dc.description.references | Agostini, G. et al. Preparation of supported Pd catalysts: from the Pd precursor solution to the deposited Pd2+ phase. Langmuir 26, 11204–11211 (2010). | es_ES |
dc.description.references | Cerrillo, J. L. et al. Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. Catal. Sci. Technol. 10, 3646–3653 (2020). | es_ES |
dc.description.references | Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). | es_ES |
dc.description.references | Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019). | es_ES |
dc.description.references | Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020). | es_ES |
dc.description.references | Liu, L. et al. Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites. Nat. Protoc. https://doi.org/10.1038/s41596-020-0366-9 (2020). | es_ES |
dc.description.references | Li, P. et al. Explaining the influence of the introduced base sites into alkali oxide modified CsX towards side-chain alkylation of toluene with methanol. RSC Adv. 9, 13234–13242 (2019). | es_ES |
dc.description.references | Concepcion-Heydorn, P. et al. Structural and catalytic properties of sodium and cesium exchanged X and Y zeolites, and germanium substituted X zeolite. J. Mol. Catal. A 162, 227–246 (2000). | es_ES |
dc.description.references | Seo, D.-W., Rahma, S. T., Reddy, B. M. & Parka, S.-E. Carbon dioxide assisted toluene side-chain alkylation with methanol over Cs-X zeolite catalyst. J. CO2 Util. 26, 254–261 (2018). | es_ES |
dc.description.references | Rivero-Crespo, M. Á. et al. Intermolecular carbonyl-olefin metathesis with vinyl ethers catalysed by homogeneous and solid acids in flow. Angew. Chem. Int. Ed. 59, 3846–3849 (2020). | es_ES |
dc.description.references | Kashani, S. K., Jessiman, J. E. & Newman, S. G. Exploring homogeneous conditions for mild Buchwald–Hartwig amination in batch and flow. Org. Process Res. Dev. https://doi.org/10.1021/acs.oprd.0c00018 (2020). | es_ES |
dc.description.references | Alami, M., Liron, F., Gervais, M., Peyrat, J.-F. & Brion, J.-D. Ortho substituents direct regioselective addition of tributyltin hydride to unsymmetrical diaryl (or heteroaryl) alkynes: an efficient route to stannylated stilbene derivatives. Angew. Chem. Int. Ed. 41, 1578–1580 (2002). | es_ES |
dc.description.references | Onuigbo, L., Raviola, C., Di Fonzo, A., Protti, S. & Fagnoni, M. Sunlight-driven synthesis of triarylethylenes (TAEs) via metal-free Mizoroki–Heck-type coupling. Eur. J. Org. Chem. 38, 5297–5303 (2018). | es_ES |
dc.description.references | Wang, H., Gao, Y., Zhou, C. & Li, G. Visible-light-driven reductive carboarylation of styrenes with CO2 and aryl halides. J. Am. Chem. Soc. 142, 8122–8129 (2020). | es_ES |
dc.description.references | Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014). | es_ES |
dc.description.references | Bardagi, J. I., Ghosh, I., Schmalzbauer, M., Ghosh, T. & König, B. Anthraquinones as photoredox catalysts for the reductive activation of aryl halides. Eur. J. Org. Chem. 1, 34–40 (2018). | es_ES |
dc.description.references | Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R. & Jacobi von Wangelin, A. Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem. Eur. J. 21, 15496–15501 (2015). | es_ES |
dc.description.references | López-Calixto, C. G., Liras, M., de la Peña O’Shea, V. A. & Pérez-Ruiz, R. Synchronized biphotonic process triggering C–C coupling catalytic reactions. Appl. Catal. B 237, 18–23 (2018). | es_ES |
dc.description.references | Martínez-Gualda, A. M. et al. Chromoselective access to Z- or E-allylated amines and heterocycles by a photocatalytic allylation reaction. Nat. Commun. 10, 2634 (2019). | es_ES |
dc.description.references | Yang, J. et al. Direct synthesis of adipic acid esters via palladium catalysed carbonylation of 1,3-dienes. Science 366, 1514–1517 (2019). | es_ES |
dc.description.references | Uehling, M. R., King, R. P., Krska, S. W., Cernak, T. & Buchwald, S. L. Pharmaceutical diversification via palladium oxidative addition complexes. Science 363, 405–408 (2019). | es_ES |
dc.description.references | Ross, S. P., Rahman, A. A. & Sigman, M. S. Development and mechanistic interrogation of interrupted chain-walking in the enantioselective relay Heck reaction. J. Am. Chem. Soc. 142, 10516–10525 (2020). | es_ES |