- -

Regioirregular and catalytic Mizoroki-Heck reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regioirregular and catalytic Mizoroki-Heck reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garnes-Portoles, Francisco es_ES
dc.contributor.author Greco, Rossella es_ES
dc.contributor.author Oliver-Meseguer, Judit es_ES
dc.contributor.author Castellanos-Soriano, Jorge es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Lopez-Haro, Miguel es_ES
dc.contributor.author Hernández-Garrido, Juan Carlos es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Pérez-Ruiz, Raúl es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.date.accessioned 2022-09-13T18:02:58Z
dc.date.available 2022-09-13T18:02:58Z
dc.date.issued 2021-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/185960
dc.description.abstract [EN] The palladium-catalysed cross-coupling reaction between alkenes and aryl halides (the Mizoroki-Heck reaction) is a powerful methodology to construct new carbon-carbon bonds. However, the success of this reaction is in part hampered by an extremely marked regioselectivity on the double bond, which dictates that electron-poor alkenes react exclusively on the beta-carbon. Here, we show that ligand-free, few-atom palladium clusters in solution catalyse the alpha-selective intramolecular Mizoroki-Heck coupling of iodoaryl cinnamates, and mechanistic studies support the formation of a sterically encumbered cinnamate-palladium cluster intermediate. Following this rationale, the alpha-selective intermolecular coupling of aryl iodides with styrenes is also achieved with palladium clusters encapsulated within fine-tuned and sterically restricted zeolite cavities to produce 1,1-bisarylethylenes, which are further engaged with aryl halides by a metal-free photoredox-catalysed coupling. These ligand-free methodologies significantly expand the chemical space of the Mizoroki-Heck coupling. es_ES
dc.description.sponsorship This work was supported by MINECO (Spain, projects CTQ 2017-86735-P, PID2019-105391GB-C22 and MAT2017-82288-C2-1-P, Severo Ochoa programme SEV-2016-0683 and the Juan de la Cierva programme). F.G.-P. and R.G. thank ITQ for the concession of a contract. J.O.-M. acknowledges the Juan de la Cierva programme for the concession of a contract, and R.P.-R. and J.C.-S. thank the Plan GenT programme (CIDEGENT/2018/044) funded by Generalitat Valenciana. HR STEM measurements were performed at DME-UCA in Cadiz University, with financial support from FEDER/MINECO (PID2019-110018GA-I00 and PID2019-107578GA-I00). We acknowledge ALBA Synchrotron for allocating beamtime and CL AE SS beamline staff for their technical support during our experiment. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Regioirregular and catalytic Mizoroki-Heck reactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41929-021-00592-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-86735-P/ES/CATALISIS CON ATOMOS METALICOS AISLADOS Y CLUSTERES ULTRAPEQUEÑOS BIEN DEFINIDOS, SIN LIGANDOS Y CONFINADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//AYUDA CIDEGENT CONTRATACION RAUL PEREZ RUIZ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105391GB-C22/ES/DESARROLLO DE NUEVOS SISTEMAS DE CONVERSION BIFOTONICA A MAYOR FRECUENCIA BASADOS EN ANIQUILACION TRIPLETE-TRIPLETE PARA FOTOCATALISIS REDOX CON LUZ VISIBLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//CIDEGENT%2F2018%2F044//PHOTON UPCONVERSION REDOX CATALYSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107578GA-I00/ES/COMBINACION DE PLASMONICA Y CATALISIS PARA EL DESARROLLO DE NANOESTRUCTURAS BASADAS EN MOS2 PARA APLICACIONES DE ENERGIA LIMPIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-110018GA-I00/ES/HACIA CATALIZADORES HOMO Y HETERO DIATOMICOS DE AU-PD SOPORTADOS SOBRE OXIDOS: SINTEIS, CATACTERIZACION ATOMICA Y ACTIVIDAD EN LA REACCION DE OXIDACION SELECTIVA DE ALCOHOLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Garnes-Portoles, F.; Greco, R.; Oliver-Meseguer, J.; Castellanos-Soriano, J.; Jiménez Molero, MC.; Lopez-Haro, M.; Hernández-Garrido, JC.... (2021). Regioirregular and catalytic Mizoroki-Heck reactions. Nature Catalysis. 4(4):293-303. https://doi.org/10.1038/s41929-021-00592-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41929-021-00592-3 es_ES
dc.description.upvformatpinicio 293 es_ES
dc.description.upvformatpfin 303 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2520-1158 es_ES
dc.relation.pasarela S\437882 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio Ciencia, Innovación y Universidades es_ES
dc.contributor.funder MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Phan, N. T. S., Van Der Sluys, M. & Jones, C. W. On the nature of the active species in palladium catalysed Mizoroki–Heck and Suzuki–Miyaura couplings—homogeneous or heterogeneous catalysis, a critical review. Adv. Synth. Catal. 348, 609–679 (2006). es_ES
dc.description.references Mo, J. & Xiao, J. The Heck reaction of electron-rich olefins with regiocontrol by hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 4152–4157 (2006). es_ES
dc.description.references Wucher, P. et al. Breaking the regioselectivity rule for acrylate insertion in the Mizoroki–Heck reaction. Proc. Natl Acad. Sci. USA 108, 8955–8959 (2011). es_ES
dc.description.references Barluenga, J., Moriel, P., Valdés, C. & Aznar, F. N. Tosylhydrazones as reagents for cross-coupling reactions: a route to polysubstituted olefins. Angew. Chem. Int. Ed. 46, 5587–5590 (2007). es_ES
dc.description.references Zou, Y. et al. Selective arylation and vinylation at the α position of vinylarenes. Chem. Eur. J. 19, 3504–3511 (2013). es_ES
dc.description.references Tang, J., Hackenberger, D. & Goossen, L. J. Branched arylalkenes from cinnamates: selectivity inversion in Heck reactions by carboxylates as deciduous directing groups. Angew. Chem. Int. Ed. 55, 11296–11299 (2016). es_ES
dc.description.references Sullivan, R. J., Freure, G. P. R. & Newman, S. G. Overcoming scope limitations in cross-coupling of diazo nucleophiles by manipulating catalyst speciation and using flow diazo generation. ACS Catal. 9, 5623–5630 (2019). es_ES
dc.description.references Nakashima, Y., Hirata, G., Sheppard, T. D. & Nishikata, T. The Mizoroki–Heck reaction with internal olefins: reactivities and stereoselectivities. Asian J. Org. Chem. 9, 480–491 (2020). es_ES
dc.description.references Torborg, C. & Beller, M. Recent applications of palladium-catalysed coupling reactions in the pharmaceutical, agrochemical and fine chemical industries. Adv. Synth. Catal. 351, 3027–3043 (2009). es_ES
dc.description.references Dounay, A. B. & Overman, L. E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 103, 2945–2963 (2003). es_ES
dc.description.references Tsvelikhovsky, D. & Buchwald, S. L. Synthesis of heterocycles via Pd-ligand controlled cyclization of 2-chloro-N-(2-vinyl)aniline: preparation of carbazoles, indoles, dibenzazepines and acridines. J. Am. Chem. Soc. 132, 14048–14051 (2010). es_ES
dc.description.references Wu, X.-F., Anbarasan, P., Neumann, H. & Beller, M. From noble metal to Nobel prize: palladium-catalysed coupling reactions as key methods in organic synthesis. Angew. Chem. Int. Ed. 49, 9047–9050 (2010). es_ES
dc.description.references Beletskaya, I. P. & Cheprakov, A. V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009–3066 (2000). es_ES
dc.description.references Weng, S.-S., Ke, C.-S., Chen, F.-K., Lyu, Y.-F. & Lin, G.-Y. Transesterification catalysed by iron(iii) β-diketonate species. Tetrahedron 67, 1640–1648 (2011). es_ES
dc.description.references Nájera, C. Oxime-derived palladacycles: applications in catalysis. ChemCatChem 8, 1865–1881 (2016). es_ES
dc.description.references Leyva-Pérez, A., Oliver-Meseguer, J., Rubio-Marqués, P. & Corma, A. Water-stabilized three- and four-atom palladium clusters as highly active catalytic species in ligand-free C–C cross-coupling reactions. Angew. Chem. Int. Ed. 52, 11554–11559 (2013). es_ES
dc.description.references Zhu, F., Li, Y., Wang, Z. & Wu, X.-F. Iridium-catalysed carbonylative synthesis of chromenones from simple phenols and internal alkynes at atmospheric pressure. Angew. Chem. Int. Ed. 55, 14151–14154 (2016). es_ES
dc.description.references Li, X. et al. Palladium-catalysed enantioselective intramolecular dearomative Heck reaction. J. Am. Chem. Soc. 140, 13945–13951 (2018). es_ES
dc.description.references Fernández, E. et al. Base-controlled Heck, Suzuki and Sonogashira reactions catalysed by ligand-free platinum or palladium single atom and sub-nanometer clusters. J. Am. Chem. Soc. 141, 1928–1940 (2019). es_ES
dc.description.references Sperger, T., Stirner, C. K. & Schoenebeck, F. Bench-stable and recoverable palladium(i) dimer as an efficient catalyst for Heck cross-coupling. Synthesis 49, 115–120 (2017). es_ES
dc.description.references Fortea-Pérez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017). es_ES
dc.description.references von Schenck, H., Åkermark, B. & Svensson, M. Electronic control of the regiochemistry in the Heck reaction. J. Am. Chem. Soc. 125, 3503–3508 (2003). es_ES
dc.description.references Deeth, R. J., Smith, A. & Brown, J. M. Electronic control of the regiochemistry in palladium-phosphine catalysed intermolecular Heck reactions. J. Am. Chem. Soc. 126, 7144–7151 (2004). es_ES
dc.description.references Djakovitch, L. & Koehler, K. Heck reaction catalysed by Pd-modified zeolites. J. Am. Chem. Soc. 123, 5990–5999 (2001). es_ES
dc.description.references Dams, M. et al. Pd-zeolites as heterogeneous catalysts in Heck chemistry. J. Catal. 209, 225–236 (2002). es_ES
dc.description.references Marqués, P., Rivero-Crespo, M. A., Leyva-Pérez, A. & Corma, A. Well-defined noble metal single sites in zeolites as an alternative to catalysis by insoluble metal salts. J. Am. Chem. Soc. 137, 11832–11837 (2015). es_ES
dc.description.references Corma, A., García, H., Leyva, A. & Primo, A. Basic zeolites containing palladium as bifunctional heterogeneous catalysts for the Heck reaction. Appl. Catal. A 247, 41–49 (2003). es_ES
dc.description.references Sun, T., Seff, K., Heo, N. H. & Petranovskii, V. P. A cationic cesium continuum in zeolite X. Science 259, 495–497 (1993). es_ES
dc.description.references Agostini, G. et al. Preparation of supported Pd catalysts: from the Pd precursor solution to the deposited Pd2+ phase. Langmuir 26, 11204–11211 (2010). es_ES
dc.description.references Cerrillo, J. L. et al. Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. Catal. Sci. Technol. 10, 3646–3653 (2020). es_ES
dc.description.references Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). es_ES
dc.description.references Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019). es_ES
dc.description.references Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020). es_ES
dc.description.references Liu, L. et al. Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites. Nat. Protoc. https://doi.org/10.1038/s41596-020-0366-9 (2020). es_ES
dc.description.references Li, P. et al. Explaining the influence of the introduced base sites into alkali oxide modified CsX towards side-chain alkylation of toluene with methanol. RSC Adv. 9, 13234–13242 (2019). es_ES
dc.description.references Concepcion-Heydorn, P. et al. Structural and catalytic properties of sodium and cesium exchanged X and Y zeolites, and germanium substituted X zeolite. J. Mol. Catal. A 162, 227–246 (2000). es_ES
dc.description.references Seo, D.-W., Rahma, S. T., Reddy, B. M. & Parka, S.-E. Carbon dioxide assisted toluene side-chain alkylation with methanol over Cs-X zeolite catalyst. J. CO2 Util. 26, 254–261 (2018). es_ES
dc.description.references Rivero-Crespo, M. Á. et al. Intermolecular carbonyl-olefin metathesis with vinyl ethers catalysed by homogeneous and solid acids in flow. Angew. Chem. Int. Ed. 59, 3846–3849 (2020). es_ES
dc.description.references Kashani, S. K., Jessiman, J. E. & Newman, S. G. Exploring homogeneous conditions for mild Buchwald–Hartwig amination in batch and flow. Org. Process Res. Dev. https://doi.org/10.1021/acs.oprd.0c00018 (2020). es_ES
dc.description.references Alami, M., Liron, F., Gervais, M., Peyrat, J.-F. & Brion, J.-D. Ortho substituents direct regioselective addition of tributyltin hydride to unsymmetrical diaryl (or heteroaryl) alkynes: an efficient route to stannylated stilbene derivatives. Angew. Chem. Int. Ed. 41, 1578–1580 (2002). es_ES
dc.description.references Onuigbo, L., Raviola, C., Di Fonzo, A., Protti, S. & Fagnoni, M. Sunlight-driven synthesis of triarylethylenes (TAEs) via metal-free Mizoroki–Heck-type coupling. Eur. J. Org. Chem. 38, 5297–5303 (2018). es_ES
dc.description.references Wang, H., Gao, Y., Zhou, C. & Li, G. Visible-light-driven reductive carboarylation of styrenes with CO2 and aryl halides. J. Am. Chem. Soc. 142, 8122–8129 (2020). es_ES
dc.description.references Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014). es_ES
dc.description.references Bardagi, J. I., Ghosh, I., Schmalzbauer, M., Ghosh, T. & König, B. Anthraquinones as photoredox catalysts for the reductive activation of aryl halides. Eur. J. Org. Chem. 1, 34–40 (2018). es_ES
dc.description.references Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R. & Jacobi von Wangelin, A. Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem. Eur. J. 21, 15496–15501 (2015). es_ES
dc.description.references López-Calixto, C. G., Liras, M., de la Peña O’Shea, V. A. & Pérez-Ruiz, R. Synchronized biphotonic process triggering C–C coupling catalytic reactions. Appl. Catal. B 237, 18–23 (2018). es_ES
dc.description.references Martínez-Gualda, A. M. et al. Chromoselective access to Z- or E-allylated amines and heterocycles by a photocatalytic allylation reaction. Nat. Commun. 10, 2634 (2019). es_ES
dc.description.references Yang, J. et al. Direct synthesis of adipic acid esters via palladium catalysed carbonylation of 1,3-dienes. Science 366, 1514–1517 (2019). es_ES
dc.description.references Uehling, M. R., King, R. P., Krska, S. W., Cernak, T. & Buchwald, S. L. Pharmaceutical diversification via palladium oxidative addition complexes. Science 363, 405–408 (2019). es_ES
dc.description.references Ross, S. P., Rahman, A. A. & Sigman, M. S. Development and mechanistic interrogation of interrupted chain-walking in the enantioselective relay Heck reaction. J. Am. Chem. Soc. 142, 10516–10525 (2020). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem