Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrer Contreras, Miguel | es_ES |
dc.contributor.author | Diego Antón, María de | es_ES |
dc.contributor.author | Piñero, Gema | es_ES |
dc.contributor.author | Gonzalez, Alberto | es_ES |
dc.date.accessioned | 2022-09-14T18:04:54Z | |
dc.date.available | 2022-09-14T18:04:54Z | |
dc.date.issued | 2021 | es_ES |
dc.identifier.issn | 2329-9290 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186048 | |
dc.description.abstract | [EN] Acoustic sensor networks (ASNs) are an effective solution to implement active noise control (ANC) systems by using distributed adaptive algorithms. On one hand, ASNs provide scalable systems where the signal processing load is distributed among the network nodes. On the other hand, their noise reduction performance is comparable to that of their respective centralized processing systems. In this sense, the distributed multiple error filtered-x least mean squares (DMEFxLMS) adaptive algorithm has shown to obtain the same performance than its centralized counterpart as long as there are no communications constraints in the underlying ASN. Regarding affine projection (AP) adaptive algorithms, some distributed approaches that are approximated versions of the multichannel filtered-x affine projection (MFxAP) algorithm have been previously proposed. These AP algorithms can efficiently share the processing load among the nodes, but at the expense of worsening their convergence properties. In this paper we develop the exact distributed multichannel filtered-x AP (EFxAP) algorithm, which obtains the same solution as that of the MFxAP algorithm as long as there are no communications constraints in the underlying ASN. In the EFxAP algorithm each node can compute a part or the entire inverse matrix needed by the centralized MFxAP algorithm. Thus, we propose three different strategies that obtain significant computational saving: 1) Gauss Elimination, 2) block LU factorization, and 3) matrix inversion lemma. As a result, each node computes only between 25%¿60% of the number of multiplications required by the direct inversion of the matrix. Regarding the performance in transient and steady states, the EFxAP exhibits the fastest convergence and the highest noise level reduction for any size of the acoustic network and any projection order of the AP algorithm compared to the DMEFxLMS and two previously reported distributed AP algorithms. | es_ES |
dc.description.sponsorship | This work was supported by EU together with Spanish Government through RTI2018-098085B-C41 (MINECO/FEDER) and Generalitat Valenciana through PROMETEO/2019/109. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE/ACM Transactions on Audio Speech and Language Processing | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Active noise control | es_ES |
dc.subject | Acoustic sensor networks | es_ES |
dc.subject | Affine projection algorithm | es_ES |
dc.subject | Distributed algorithms | es_ES |
dc.subject | Adaptive filters | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Affine Projection Algorithm Over Acoustic Sensor Networks for Active Noise Control | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TASLP.2020.3042590 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Ferrer Contreras, M.; Diego Antón, MD.; Piñero, G.; Gonzalez, A. (2021). Affine Projection Algorithm Over Acoustic Sensor Networks for Active Noise Control. IEEE/ACM Transactions on Audio Speech and Language Processing. 29:448-461. https://doi.org/10.1109/TASLP.2020.3042590 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TASLP.2020.3042590 | es_ES |
dc.description.upvformatpinicio | 448 | es_ES |
dc.description.upvformatpfin | 461 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.relation.pasarela | S\424891 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
upv.costeAPC | 968 | es_ES |