- -

Nickel phosphonate MOF as efficient water splitting photocatalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nickel phosphonate MOF as efficient water splitting photocatalyst

Mostrar el registro completo del ítem

Salcedo-Abraira, P.; Vilela, SMF.; Babaryk, AA.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón Oltra, S.... (2021). Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Research. 14(2):450-457. https://doi.org/10.1007/s12274-020-3056-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186160

Ficheros en el ítem

Metadatos del ítem

Título: Nickel phosphonate MOF as efficient water splitting photocatalyst
Autor: Salcedo-Abraira, Pablo Vilela, Sérgio M. F. Babaryk, Artem A. Cabrero-Antonino, Maria Salles, Fabrice Navalón Oltra, Sergio García Gómez, Hermenegildo Horcajada, Patricia Gregorio, Pedro
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Proyectos Arquitectónicos - Departament de Projectes Arquitectònics
Fecha difusión:
Resumen:
[EN] A novel microporous two-dimensional (2D) Ni-based phosphonate metal-organic framework (MOF; denoted as IEF-13) has been successfully synthesized by a simple and green hydrothermal method and fully characterized using ...[+]
Palabras clave: Metal-organic framework , Phosphonates , Photocatalysis , Water splitting
Derechos de uso: Reserva de todos los derechos
Fuente:
Nano Research. (issn: 1998-0124 )
DOI: 10.1007/s12274-020-3056-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s12274-020-3056-6
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104228RB-I00/ES/SEPARACION Y (FOTO)DEGRADACION COMBINADA DE CONTAMINANTES EN AGUA UTILIZANDO DISPOSITIVOS BASADOS EN REDES METAL-ORGANICAS POROSAS/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104228RB-I00/ES/SEPARACION Y (FOTO)DEGRADACION COMBINADA DE CONTAMINANTES EN AGUA UTILIZANDO DISPOSITIVOS BASADOS EN REDES METAL-ORGANICAS POROSAS/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2017%2F083//GRAFENOS COMO FOTOELECTRODOS PARA LA GENERACION DE COMBUSTIBLES SOLARES./
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F214//MATERIALES CARBONOSOS DE BAJO COSTE COMO CARBOCATALIZADORES SOSTENIBLES EN PROCESOS DE OXIDACION AVANZADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/
info:eu-repo/grantAgreement/AGENCIA VALENCIANA DE LA INNOVACION//INNEST%2F2020%2F111//VALORIZACIÓN DE RESIDUOS DE CARBÓN ACTIVO GRANULAR GENERADOS EN EL PROCESO DE POTABILIZACIÓN COMO CARBOCATALIZADOR SOSTENIBLE EN PROCESOS DE OZONIZACIÓN DEL CICLO INTEGRAL DEL AGUA/
[-]
Agradecimientos:
This work was supported by MOFseidon project (Retos project, PID2019-104228RB-I00, MICIU-AEI/FEDER, UE), and the Ramon Areces Foundation project H+MOFs. P. H. acknowledges the Spanish Ramon y Cajal Programme (2014-15039). ...[+]
Tipo: Artículo

References

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021. [+]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021.

Zhou, H. C.; Kitagawa, S. Themed issues on metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5415–6172.

Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev. 2011, 112, 782–835.

Ryder, M. R.; Tan, J. C. Nanoporous metal organic framework materials for smart applications. Mater. Sci. Technol. 2014, 30, 1598–1612.

Gagnon, K. J.; Perry, H. P.; Clearfield, A. Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev 2012, 112, 1034–1054.

Shearan, S. J. I.; Stock, N.; Emmerling, F.; Demel, J.; Wright, P. A.; Demadis, K. D.; Vassaki, M.; Costantino, F.; Vivani, R.; Sallard, S. et al. New directions in metal phosphonate and phosphinate chemistry. Crystals 2019, 9, 270.

De, S.; Zhang, J. G.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347.

An, Y.; Liu, Y Y; An, P. F.; Dong, J. C.; Xu, B. Y; Dai, Y; Qin, X. Y; Zhang, X. Y.; Whangbo, M. H.; Huang, B. B. NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 3036–3040.

Chen, H. F.; Yang, S. J.; Tsai, Z. H.; Hung, W. Y; Wang, T. C.; Wong, K. T. 1,3,5-Triazine derivatives as new electron transport-type host materials for highly efficient green phosphorescent OLEDs. J. Mater. Chem. 2009, 19, 8112–8118.

Taddei, M.; Costantino, F.; Marmottini, F.; Comotti, A.; Sozzani, P.; Vivani, R. The first route to highly stable crystalline microporous zirconium phosphonate metal-organic frameworks. Chem. Commun. 2014, 50, 14831–14834.

Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414–5445.

Shi, Y.; Yang, A. F.; Cao, C. S.; Zhao, B. Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord. Chem. Rev. 2019, 390, 50–75.

Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 2019, 31, 1900617.

Carbonell, E.; Ramiro-Manzano, F.; Rodriguez, I.; Corma, A.; Meseguer, F.; García, H. Enhancement of TiO2 photocatalytic activity by structuring the photocatalyst film as photonic sponge. Photochem. Photobiol. Sci. 2008, 7, 931–935.

Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipinski, W.; Khalilpour, K. R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620.

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

Li, H.; Sun, Y.; Yuan, Z. Y.; Zhu, Y. P.; Ma, T. Y. Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. 2018, 130, 3276–3281.

Remiro-Buenamañana, S.; Cabrero-Antonino, M.; Martínez-Guanter, M.; Álvaro, M.; Navalón, S.; García, H. Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Appl. Catal. B Environ. 2019, 254, 677–684.

Fiaz, M.; Athar, M. Modification of MIL-125(Ti) by incorporating various transition metal oxide nanoparticles for enhanced photocurrent during hydrogen and oxygen evolution reactions. ChemistrySelect 2019, 4, 8508–8515.

Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8.

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.

Frenkel, D.; Smit, B. Understanding Molecular Simulation; Academic Press: San Diego, 2001.

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.

Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.

Salles, F.; Kolokolov, D. I.; Jobic, H.; Maurin, G.; Llewellyn, P. L.; Devic, T.; Serre, C.; Ferey, G. Adsorption and diffusion of H2 in the MOF type systems MIL-47(V) and MIL-53(Cr): A combination of microcalorimetry and QENS experiments with molecular simulations. J. Phys. Chem. C 2009, 113, 7802–7812.

Harris, J. G.; Yung, K. H. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 1995, 99, 12021–12024.

Stock, N. High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater. 2010, 129, 287–295.

Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155.

Frost, H.; Düren, T.; Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks. J. Phys. Chem. B 2006, 110, 9565–9570.

Duan, J. G.; Higuchi, M.; Krishna, R.; Kiyonaga, T.; Tsutsumi, Y.; Sato, Y.; Kubota, Y.; Takata, M.; Kitagawa, S. High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chem. Sci. 2014, 5, 660–666.

Chen, C.; Lee, Y. R.; Ahn, W. S. CO2 adsorption over metal-organic frameworks: A mini review. J. Nanosci. Nanotechnol. 2016, 16, 4291–4301.

Boudjema, L.; Long, J.; Salles, F.; Larionova, J.; Guari, Y.; Trens, P. A switch in the hydrophobic/hydrophilic gas-adsorption character of prussian blue analogues: An affinity control for smart gas sorption. Chem.—Eur. J. 2019, 25, 479–484.

Salles, F.; Bourrelly, S.; Jobic, H.; Devic, T.; Guillerm, V.; Llewellyn, P.; Serre, C.; Ferey, G.; Maurin, G. Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF. J. Phys. Chem. C 2011, 115, 10764–10776.

Freedman, L. D.; Doak, G. O. The preparation and properties of phosphonic acids. Chem. Rev. 1957, 57, 479–523.

Wilkinson, G.; Gillard, R. D.; McCleverty, J. A. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds; Pergamon Press: Oxford, 1987.

Wang, C.; Liu, D. M.; Lin, W. B. Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 2013, 135, 13222–13234.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem