Mostrar el registro sencillo del ítem
dc.contributor.author | Valcárcel-Germes, Mercedes | es_ES |
dc.contributor.author | Ibañez, Gines | es_ES |
dc.contributor.author | Martí-Renau, Raul | es_ES |
dc.contributor.author | Beltran, Joaquim | es_ES |
dc.contributor.author | Cebolla Cornejo, Jaime | es_ES |
dc.contributor.author | Rosello Ripolles, Salvador | es_ES |
dc.date.accessioned | 2022-09-16T18:04:09Z | |
dc.date.available | 2022-09-16T18:04:09Z | |
dc.date.issued | 2021-06 | es_ES |
dc.identifier.issn | 1618-2642 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186214 | |
dc.description.abstract | [EN] E-noses can be routinely used to evaluate the volatile profile of tomato samples once the sensor drift and standardization issues are adequately solved. Short-term drift can be corrected using a strategy based on a multiplicative drift correction procedure coupled with a PLS adaptation of the component correction. It must be performed specifically for each sequence, using all sequence signals data. With this procedure, a drastic reduction of sensor signal %RSD can be obtained, ranging between 91.5 and 99.7% for long sequences and between 75.7 and 98.8% for short sequences. On the other hand, long-term drift can be fixed up using a synthetic reference standard mix (with a representation of main aroma volatiles of the species) to be included in each sequence that would enable sequence standardization. With this integral strategy, a high number of samples can be analyzed in different sequences, with a 94.4% success in the aggrupation of the same materials in PLS-DA two-dimensional graphical representations. Using this graphical interface, e-noses can be used to developed expandable maps of volatile profile similitudes, which will be useful to select the materials that most resemble breeding objectives or to analyze which preharvest and postharvest procedures have a lower impact on the volatile profile, avoiding the costs and sample limitations of gas chromatography. | es_ES |
dc.description.sponsorship | This research was partially funded by Jaume I University with projects P1-1B2011-41 and COGRUP/2016/04. G. Ibanez also thanks Universitat Jaume I for funding his pre-doctoral grant (PREDOC/2015/45). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Analytical and Bioanalytical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electronic nose | es_ES |
dc.subject | Drift correction | es_ES |
dc.subject | Chemometrics | es_ES |
dc.subject | Sequence standardization | es_ES |
dc.subject | Tomato | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Optimization of electronic nose drift correction applied to tomato volatile profiling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00216-021-03340-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1-1B2011-41/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//COGRUP%2F2016%2F04/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//PREDOC%2F2015%2F45/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Valcárcel-Germes, M.; Ibañez, G.; Martí-Renau, R.; Beltran, J.; Cebolla Cornejo, J.; Rosello Ripolles, S. (2021). Optimization of electronic nose drift correction applied to tomato volatile profiling. Analytical and Bioanalytical Chemistry. 413(15):3893-3907. https://doi.org/10.1007/s00216-021-03340-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00216-021-03340-5 | es_ES |
dc.description.upvformatpinicio | 3893 | es_ES |
dc.description.upvformatpfin | 3907 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 413 | es_ES |
dc.description.issue | 15 | es_ES |
dc.identifier.pmid | 33893513 | es_ES |
dc.relation.pasarela | S\434675 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.description.references | Tieman D, Zhu G, Resende MFR, Lin T, Nguyen C, Bies D, et al. A chemical genetic roadmap to improved tomato flavor. Science. 2017;355(6323):391–4. https://doi.org/10.1126/science.aal1556. | es_ES |
dc.description.references | Baldwin EA, Scott J, Shewmaker CK, Schuh W. Flavor trivia and tomato aroma: biochemistry and possible mechanism for control of important aroma components. HortScience. 2000;35(6):1013–22. https://doi.org/10.21273/HORTSCI.35.6.1013. | es_ES |
dc.description.references | Davies JN, Hobson GE. The constituents of tomato fruit — the influence of environment, nutrition, and genotype. CRC Crit Rev Food Sci Nutr. 1981;15(3):205–80. https://doi.org/10.1080/10408398109527317. | es_ES |
dc.description.references | Lahoz I, Pérez-de-Castro A, Valcárcel M, Macua JI, Beltrán J, Roselló S, et al. Effect of water deficit on the agronomical performance and quality of processing tomato. Sci Hortic (Amsterdam). 2016;200:55–65. https://doi.org/10.1016/j.scienta.2015.12.051. | es_ES |
dc.description.references | Schouten RE, Woltering EJ, Tijskens LMM. Sugar and acid interconversion in tomato fruits based on biopsy sampling of locule gel and pericarp tissue. Postharvest Biol Technol. 2016;111:83–92. https://doi.org/10.1016/j.postharvbio.2015.07.032. | es_ES |
dc.description.references | Boukobza F, Taylor AJ. Effect of postharvest treatment on flavour volatiles of tomatoes. Postharvest Biol Technol. 2002;25(3):321–31. https://doi.org/10.1016/S0925-5214(02)00037-6. | es_ES |
dc.description.references | Zhao J, Sauvage C, Zhao J, Bitton F, Bauchet G, Liu D, et al. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat Commun. 2019;10(1):1–12. https://doi.org/10.1038/s41467-019-09462-w. | es_ES |
dc.description.references | Loutfi A, Coradeschi S, Mani GK, Shankar P, Rayappan JBB. Electronic noses for food quality: a review. J Food Eng. 2015;144:103–11. https://doi.org/10.1016/j.jfoodeng.2014.07.019. | es_ES |
dc.description.references | Kiani S, Minaei S, Ghasemi-Varnamkhasti M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: a review. J Appl Res Med Aromat Plants. 2016;3(1):1–9. https://doi.org/10.1016/j.jarmap.2015.12.002. | es_ES |
dc.description.references | Sun Y, Wang J, Cheng S. Discrimination among tea plants either with different invasive severities or different invasive times using MOS electronic nose combined with a new feature extraction method. Comput Electron Agric. 2017;143:293–301. https://doi.org/10.1016/j.compag.2017.11.007. | es_ES |
dc.description.references | Majchrzak T, Wojnowski W, Dymerski T, Gębicki J, Namieśnik J. Electronic noses in classification and quality control of edible oils: a review. Food Chem. 2018;246:192–201. https://doi.org/10.1016/j.foodchem.2017.11.013. | es_ES |
dc.description.references | Jia W, Liang G, Jiang Z, Wang J. Advances in electronic nose development for application to agricultural products. Food Anal Methods. 2019;12(10):2226–40. https://doi.org/10.1007/s12161-019-01552-1. | es_ES |
dc.description.references | Marco S, Gutierrez-Galvez A. Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sensors J. 2012;12(11):3189–214. https://doi.org/10.1109/JSEN.2012.2192920. | es_ES |
dc.description.references | Rudnitskaya A. Calibration update and drift correction for electronic noses and tongues. Front Chem. 2018;6:433. https://doi.org/10.3389/fchem.2018.00433/full. | es_ES |
dc.description.references | Gutierrez-Osuna R. Pattern analysis for machine olfaction: a review. IEEE Sensors J. 2002;2(3):189–202. https://doi.org/10.1109/JSEN.2002.800688. | es_ES |
dc.description.references | Beltran J, Serrano E, López FJ, Peruga A, Valcarcel M, Rosello S. Comparison of two quantitative GC-MS methods for analysis of tomato aroma based on purge-and-trap and on solid-phase microextraction. Anal Bioanal Chem. 2006;385(7):1255–64. https://doi.org/10.1007/s00216-006-0410-9. | es_ES |
dc.description.references | Casals J, Pascual L, Cañizares J, Cebolla-Cornejo J, Casañas F, Nuez F. Genetic basis of long shelf life and variability into Penjar tomato. Genet Resour Crop Evol. 2012;59(2):219–29. https://doi.org/10.1007/s10722-011-9677-6. | es_ES |
dc.description.references | Roselló S, Nuez F, Casals J, Beltrán J, Casañas F, Cebolla-Cornejo J. Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. Eur Food Res Technol. 2011;233:331–42. https://doi.org/10.1007/s00217-011-1517-6. | es_ES |
dc.description.references | Cebolla-Cornejo J, Roselló S, Nuez F. Selection of tomato rich in nutritional terpenes. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. 2013. | es_ES |
dc.description.references | Skov T, Bro R. A new approach for modelling sensor based data. Sensors Actuators B Chem. 2005;106(2):719–29. https://doi.org/10.1016/j.snb.2004.09.023. | es_ES |
dc.description.references | Salit ML, Turk GC. A drift correction procedure. Anal Chem. 1998;70(15):3184–90. https://doi.org/10.1021/ac980095b. | es_ES |
dc.description.references | Artursson T, Eklo T, Lundstro I, Sjo M. Drift correction for gas sensors using multivariate methods. J Chemom. 2000;14(5–6):711–23. https://doi.org/10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4. | es_ES |
dc.description.references | Ballabio D, Consonni V. Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods. 2013;5(16):3790. https://doi.org/10.1039/C3AY40582F. | es_ES |
dc.description.references | Krzanowski W. Principles of multivariate analysis: a user’s perspective: Oxford University Press; 2000. | es_ES |
dc.description.references | Di Natale C, Martinelli E, D’Amico A. Counteraction of environmental disturbances of electronic nose data by independent component analysis. Sensors Actuators B Chem. 2002;82(2–3):158–65. https://doi.org/10.1016/S0925-4005(01)01001-2. | es_ES |
dc.description.references | Hyvärinen a, Oja E. Independent component analysis: algorithms and applications. Neural Netw 2000;13(4–5):411–430; https://doi.org/10.1016/S0893-6080(00)00026-5. | es_ES |
dc.description.references | Xu M, Yang SL, Peng W, Liu YJ, Xie DS, Li XY, et al. A novel method for the discrimination of semen arecae and its processed products by using computer vision, electronic nose, and electronic tongue. Evid Based Complement Altern Med. 2015;2015. https://doi.org/10.1155/2015/753942. | es_ES |
dc.description.references | Gromski PS, Correa E, Vaughan AA, Wedge DC, Turner ML, Goodacre R. A comparison of different chemometrics approaches for the robust classification of electronic nose data. Anal Bioanal Chem. 2014;406(29):7581–90. https://doi.org/10.1007/s00216-014-8216-7. | es_ES |
dc.description.references | Shi Y, Gong F, Wang M, Liu J, Wu Y, Men H. A deep feature mining method of electronic nose sensor data for identification identifying beer olfactory information. J Food Eng. 2019;263:437–45. https://doi.org/10.1016/j.jfoodeng.2019.07.023. | es_ES |
dc.description.references | Song J, Bi J, Chen Q, Wu X, Lyu Y, Meng X. Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages. Food Chem. 2019;270:344–52. https://doi.org/10.1016/j.foodchem.2018.07.102. | es_ES |
dc.description.references | Hong X, Wang J, Qi G. E-nose combined with chemometrics to trace tomato-juice quality. J Food Eng. 2015;149:38–43. https://doi.org/10.1016/j.jfoodeng.2014.10.003. | es_ES |
dc.description.references | Buttery R, Teranishi R, Ling LC. Fresh tomato aroma volatiles: a quantitative study. J Agric Food Chem. 1987;35(4):540–4. | es_ES |
dc.description.references | Tieman D, Bliss P, McIntyre LM, Blandon-Ubeda A, Bies D, Odabasi AZ, et al. The chemical interactions underlying tomato flavor preferences. Curr Biol. 2012;22(11):1035–9. https://doi.org/10.1016/j.cub.2012.04.016. | es_ES |
dc.description.references | Padilla M, Perera A, Montoliu I, Chaudry A, Persaud K, Marco S. Drift compensation of gas sensor array data by orthogonal signal correction. Chemom Intell Lab Syst. 2010;100(1):28–35. https://doi.org/10.1016/j.chemolab.2009.10.002. | es_ES |
dc.description.references | Tomic O, Ulmer H, Haugen JE. Standardization methods for handling instrument related signal shift in gas-sensor array measurement data. Anal Chim Acta. 2002;472(1–2):99–111. https://doi.org/10.1016/S0003-2670(02)00936-4. | es_ES |
dc.description.references | Tomic O, Eklöv T, Kvaal K, Haugen JE. Recalibration of a gas-sensor array system related to sensor replacement. Anal Chim Acta. 2004;512(2):199–206. https://doi.org/10.1016/j.aca.2004.03.001. | es_ES |
dc.description.references | Zhang L, Zhang D. Domain adaptation extreme learning machines for drift compensation in e-nose systems. IEEE Trans Instrum Meas. 2015;64(7):1790–801. https://doi.org/10.1109/TIM.2014.2367775. | es_ES |
dc.description.references | Yan K, Zhang D. Calibration transfer and drift compensation of e-noses via coupled task learning. Sensors Actuators B Chem. 2016;225:288–97. https://doi.org/10.1016/j.snb.2015.11.058. | es_ES |
dc.description.references | Solórzano A, Rodríguez-Pérez R, Padilla M, Graunke T, Fernandez L, Marco S, et al. Multi-unit calibration rejects inherent device variability of chemical sensor arrays. Sensors Actuators B Chem. 2018;265:142–54. https://doi.org/10.1016/j.snb.2018.02.188. | es_ES |
dc.description.references | Ziyatdinov A, Marco S, Chaudry A, Persaud K, Caminal P, Perera A. Drift compensation of gas sensor array data by common principal component analysis. Sensors Actuators B Chem. 2010;146(2):460–5. https://doi.org/10.1016/j.snb.2009.11.034. | es_ES |
dc.description.references | Fernandez L, Guney S, Gutierrez-Galvez A, Marco S. Calibration transfer in temperature modulated gas sensor arrays. Sensors Actuators B Chem. 2016;231:276–84. https://doi.org/10.1016/j.snb.2016.02.131. | es_ES |
dc.description.references | Gutierrez-Osuna R. Drift reduction for metal-oxide sensor arrays using canonical correlation regression and partial least squares. Proc 7th Int Symp Olfaction Electron Nose. 2000;1–7. | es_ES |
dc.description.references | Vergara A, Vembu S, Ayhan T, Ryan MA, Homer ML, Huerta R. Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B Chem. 2012;166–167:320–9. https://doi.org/10.1016/j.snb.2012.01.074. | es_ES |
dc.description.references | Cebolla-Cornejo J, Roselló S, Valcárcel M, Serrano E, Beltrán J, Nuez F. Evaluation of genotype and environment effects on taste and aroma flavour components of Spanish fresh tomato. J Agric Food Chem. 2011;59:2440–50. https://doi.org/10.1021/jf1045427. | es_ES |
dc.description.references | Cebolla-Cornejo J, Soler S, Nuez F. Genetic erosion of traditional varieties of vegetable crops in Europe: tomato cultivation in Valencia (Spain) as a case study. Int J Plant Prod. 2007;1(2):113–28. | es_ES |