- -

Divide et impera: How disentangling common and distinctive variability in multiset data analysis can aid industrial process troubleshooting and understanding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Divide et impera: How disentangling common and distinctive variability in multiset data analysis can aid industrial process troubleshooting and understanding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vitale, Raffaele es_ES
dc.contributor.author Noord, Onno E. de es_ES
dc.contributor.author Westerhuis, Johan A. es_ES
dc.contributor.author Smilde, Age K. es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.date.accessioned 2022-09-20T18:04:07Z
dc.date.available 2022-09-20T18:04:07Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 0886-9383 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186410
dc.description.abstract [EN] The possibility of addressing the problem of process troubleshooting and understanding by modelling common and distinctive sources of variation (factorsorcomponents) underlying two sets of measurements was explored in a real-world industrial case study. The used strategy includes a novel approach to systematically detect the number of common and distinctive components. An extension of this strategy for the analysis of a larger number of data blocks, which allows the comparison of data from multiple processing units, is also discussed. es_ES
dc.description.sponsorship Spanish Ministry of Economy and Competitiveness, Grant/Award Number: DPI2017-82896-C2-1-R es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Chemometrics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Canonical correlation analysis (CCA) es_ES
dc.subject Common components es_ES
dc.subject Distinctive components es_ES
dc.subject Permutation testing es_ES
dc.subject Singular value decomposition (SVD) es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Divide et impera: How disentangling common and distinctive variability in multiset data analysis can aid industrial process troubleshooting and understanding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cem.3266 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Vitale, R.; Noord, OED.; Westerhuis, JA.; Smilde, AK.; Ferrer, A. (2021). Divide et impera: How disentangling common and distinctive variability in multiset data analysis can aid industrial process troubleshooting and understanding. Journal of Chemometrics. 35(2):1-12. https://doi.org/10.1002/cem.3266 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cem.3266 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\448295 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem