Mostrar el registro sencillo del ítem
dc.contributor.author | Pedraza Aguilera, Tatiana | es_ES |
dc.contributor.author | Rodríguez López, Jesús | es_ES |
dc.date.accessioned | 2022-09-23T18:02:28Z | |
dc.date.available | 2022-09-23T18:02:28Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186518 | |
dc.description.abstract | [EN] It is a natural question if a Cartesian product of objects produces an object of the same type. For example, it is well known that a countable Cartesian product of metrizable topological spaces is metrizable. Related to this question, Borsik and Dobos characterized those functions that allow obtaining a metric in the Cartesian product of metric spaces by means of the aggregation of the metrics of each factor space. This question was also studied for norms by Herburt and Moszynska. This aggregation procedure can be modified in order to construct a metric or a norm on a certain set by means of a family of metrics or norms, respectively. In this paper, we characterize the functions that allow merging an arbitrary collection of (asymmetric) norms defined over a vector space into a single norm (aggregation on sets). We see that these functions are different from those that allow the construction of a norm in a Cartesian product (aggregation on products). Moreover, we study a related topological problem that was considered in the context of metric spaces by Borsik and Dobos. Concretely, we analyze under which conditions the aggregated norm is compatible with the product topology or the supremum topology in each case. | es_ES |
dc.description.sponsorship | J. Rodríguez-López acknowledges financial support from FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación Proyecto PGC2018-095709-B-C21. We kindly acknowledge the comments of all the reviewers of this paper which have contributed to improve it. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Norm | es_ES |
dc.subject | Asymmetric norm | es_ES |
dc.subject | Aggregation | es_ES |
dc.subject | Product topology | es_ES |
dc.subject | Supremum topology | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | New results on the aggregation of norms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math9182291 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095709-B-C21/ES/METRICAS DIFUSAS Y OPERADORES DE INDISTINGUIBILIDAD: APLICACIONES EN ROBOTICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Pedraza Aguilera, T.; Rodríguez López, J. (2021). New results on the aggregation of norms. Mathematics. 9(18):1-19. https://doi.org/10.3390/math9182291 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math9182291 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 18 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\445792 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |