- -

Comprehensive functional core microbiome comparison in genetically obese and lean hosts under the same environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comprehensive functional core microbiome comparison in genetically obese and lean hosts under the same environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author MARTINEZ ALVARO, MARINA es_ES
dc.contributor.author Zubiri-Gaitán, Agostina es_ES
dc.contributor.author Hernández, Pilar es_ES
dc.contributor.author Greenacre, Michael es_ES
dc.contributor.author Ferrer, Alberto es_ES
dc.contributor.author Blasco Mateu, Agustín es_ES
dc.date.accessioned 2022-09-28T18:03:32Z
dc.date.available 2022-09-28T18:03:32Z
dc.date.issued 2021-11-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186683
dc.description.abstract [EN] Our study provides an exhaustive comparison of the microbiome core functionalities (captured by 3,936 microbial gene abundances) between hosts with divergent genotypes for intramuscular lipid deposition. After 10 generations of divergent selection for intramuscular fat in rabbits and 4.14 phenotypic standard deviations (SD) of selection response, we applied a combination of compositional and multivariate statistical techniques to identify 122 cecum microbial genes with differential abundances between the lines (ranging from ¿0.75 to +0.73¿SD). This work elucidates that microbial biosynthesis lipopolysaccharides, peptidoglycans, lipoproteins, mucin components, and NADH reductases, amongst others, are influenced by the host genetic determination for lipid accretion in muscle. We also differentiated between host-genetically influenced microbial mechanisms regulating lipid deposition in body or intramuscular reservoirs, with only 28 out of 122 MGs commonly contributing to both. Importantly, the results of this study are of relevant interest for the efficient development of strategies fighting obesity. es_ES
dc.description.sponsorship We acknowledge Prof. J.J. Egozcue and V. Pawlosky for their advice in the analysis of compositional data. This work was supported by project AGL2017-86083-C2-1-P from the Spanish National research plan. M. Martinez-alvaro acknowledges a post-doctoral grant (APOSTD/2017/060) from Generalitat Valenciana es_ES
dc.language Inglés es_ES
dc.publisher Springer Nature es_ES
dc.relation.ispartof Communications Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Comprehensive functional core microbiome comparison in genetically obese and lean hosts under the same environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s42003-021-02784-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-86083-C2-1-P/ES/ESTUDIO MULTIOMICO SOBRE SENSIBILIDAD AMBIENTAL, LONGEVIDAD Y DEPOSICION GRASA EN LINEAS SELECCIONADAS DE CONEJO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//APOSTD%2F2017%2F060//AYUDA POSTDOCTORAL GVA-MARTINEZ ALVARO PROYECTO: INTEGRACION DE LAS OMICAS EN ANIMALES DE GRANJA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Martinez Alvaro, M.; Zubiri-Gaitán, A.; Hernández, P.; Greenacre, M.; Ferrer, A.; Blasco Mateu, A. (2021). Comprehensive functional core microbiome comparison in genetically obese and lean hosts under the same environment. Communications Biology. 4:1-10. https://doi.org/10.1038/s42003-021-02784-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s42003-021-02784-w es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.identifier.eissn 2399-3642 es_ES
dc.identifier.pmid 34725460 es_ES
dc.identifier.pmcid PMC8560826 es_ES
dc.relation.pasarela S\448858 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Di Cesare, M. et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016). es_ES
dc.description.references Bray, G. A. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 89, 2583–2589 (2004). es_ES
dc.description.references Chu, D. T. et al. An update on physical health and economic consequences of overweight and obesity. Diabetes Metab. Syndr. Clin. Res. Rev. 12, 1095–1100 (2018). es_ES
dc.description.references Chu, D. T. et al. An update on obesity: mental consequences and psychological interventions. Diabetes Metab. Syndr. Clin. Res. Rev. 13, 155–160 (2019). es_ES
dc.description.references Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014). es_ES
dc.description.references Herrera, B. M. & Lindgren, C. M. The genetics of obesity. Curr. Diab. Rep. 10, 498–505 (2010). es_ES
dc.description.references Martínez-Álvaro, M., Hernández, P. & Blasco, A. Divergent selection on intramuscular fat in rabbits: responses to selection and genetic parameters. J. Anim. Sci. 94, 4993–5003 (2016). es_ES
dc.description.references Schwab, C. R., Baas, T. J. & Stalder, K. J. Results from six generations of selection for intramuscular fat in Duroc swine using real-time ultrasound. II. Genet. Parameters Trends J. Anim. Sci. 88, 69–79 (2010). es_ES
dc.description.references Goodarzi, M. O. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 6, 223–236 (2018). es_ES
dc.description.references Snyder, E. E. et al. The human obesity gene map: the 2003 update. Obes. Res. 12, 369–439 (2004). es_ES
dc.description.references Horvat, S. et al. Mapping of obesity QTLs in a cross between mouse lines divergently selected on fat content. Mamm. Genome 11, 2–7 (2000). es_ES
dc.description.references Schertzer, J. D. et al. NOD1 activators link innate inmmunity to insulin resistance. Diabetes 60, 2206 (2011). es_ES
dc.description.references Doddapattar, P. et al. Fibronectin splicing variants containing extra domain a promote atherosclerosis in mice through toll-like receptor 4. Arterioscler. Thromb. Vasc. Biol. 35, 2391–2400 (2015). es_ES
dc.description.references Michelsen, K. S. et al. Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004). es_ES
dc.description.references Knuefermann, P. et al. CD14-deficient mice are protected against lipopolysaccharide-induced cardiac inflammation and left ventricular dysfunction. Circulation 106, 2608–2615 (2002). es_ES
dc.description.references Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004). es_ES
dc.description.references Lin, H. et al. Butyrate and propionate protect agains diet-induced obesity and regulate gut hormones. PLoS ONE 7, e35240 (2012). es_ES
dc.description.references Lim, Y. Y., Lee, Y. S. & Ooi, D. S. Q. Engineering the gut microbiome for treatment of obesity: a review of current understanding and progress. Biotechnol. J. 15, 1–10 (2020). es_ES
dc.description.references Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101, 1045–1050 (2004). es_ES
dc.description.references Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003). es_ES
dc.description.references Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0433-9 (2020). es_ES
dc.description.references Krajmalnik-Brown, R., Ilhan, Z.-E. E., Kang, D.-W. W. & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27, 201–214 (2012). es_ES
dc.description.references Cox, L. M. & Blaser, M. J. Pathways in microbe-induced obesity. Cell Metab. 17, 883–894 (2013). es_ES
dc.description.references Ringseis, R., Gessner, D. K. & Eder, K. The gut-liver axis in the control of energy metabolism and food intake in animals. Annu. Rev. Anim. Biosci. 8, 295–319 (2020). es_ES
dc.description.references Hotamisligil, G. S. Inflammation and metabolic disorders. Insight Rev. - Nat. 444, 860–867 (2006). es_ES
dc.description.references Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 386–389 (2007). es_ES
dc.description.references Dehghan, M. et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 6736, 1–13 (2017). es_ES
dc.description.references Tamrakar, A. K. et al. NOD2 activation induces muscle cell-autonomous innate immune responses and insulin resistance. Endocrinology 151, 5624–5637 (2010). es_ES
dc.description.references Chi, W. et al. Bacterial peptidoglycan stimulates adipocytes lipolysis. PLoS ONE 9, e97675 (2014). es_ES
dc.description.references Zhao, L., Hu, P., Zhou, Y., Purohit, J. & Hwang, D. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes. Am. J. Physiol. Endocrinol. Metab. 301, 587–598 (2011). es_ES
dc.description.references Tabrett, A. & Horton, M. W. The influence of host genetics on the microbiome. F1000 Res. 9, 1–9 (2020). es_ES
dc.description.references Martínez-Álvaro, M. et al. Bovine host genome acts on specific metabolism, communication and genetic processes of rumen microbes host-genomically linked to methane emissions. Res. Sq. https://doi.org/10.21203/rs.3.rs-290150/v1 (2021). es_ES
dc.description.references Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021). es_ES
dc.description.references Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016). es_ES
dc.description.references Poole, A. C. et al. Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe 25, 553–564.e7 (2019). es_ES
dc.description.references Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population. medRxiv https://doi.org/10.1101/2020.09.12.20193045 (2020). es_ES
dc.description.references Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079–1087 (2020). es_ES
dc.description.references Combes, S., Fortun-Lamothe, L., Cauquil, L. & Gidenne, T. Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal 7, 1429–1439 (2013). es_ES
dc.description.references Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut asociated with obesity. Nature 444, 234–270 (2018). es_ES
dc.description.references Liu, Y. et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00912-0 (2021). es_ES
dc.description.references Cani, P. D., Bibiloni, R., Knauf, C., Neyrinck, A. M. & Delzenne, N. M. Changes in gut microbiota control metabolic diet–induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008). es_ES
dc.description.references Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1131 (2006). es_ES
dc.description.references Goodpaster, B. H., Theriault, R., Watkins, S. C. & Kelley, D. E. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 49, 467–472 (2000). es_ES
dc.description.references Maltecca, C. et al. Predicting growth and carcass traits in swine using metagenomic data and machine learning algorithms. Sci. Rep. 9, 6574 (2019). es_ES
dc.description.references Fang, S., Xiong, X., Su, Y., Huang, L. & Chen, C. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiol. 17, 1–9 (2017). es_ES
dc.description.references Wang, H. et al. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl. Microbiol. Biotechnol. 103, 4931–4942 (2019). es_ES
dc.description.references Fan, J. & Watanabe, T. Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol. Ther. 99, 261–282 (2003). es_ES
dc.description.references Kawai, T. et al. Hereditary postprandial hypertriglyceridemic rabbit exhibits insulin resistance and central obesity: a novel model of metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 26, 2752–2757 (2006). es_ES
dc.description.references Zhao, S. et al. Diet-induced central obesity and insulin resistance in rabbits. J. Anim. Physiol. Anim. Nutr. (Berl.). 92, 105–111 (2008). es_ES
dc.description.references Martínez-Álvaro, M., Hernández, P., Agha, S. & Blasco, A. Correlated responses to selection for intramuscular fat in several muscles in rabbits. Meat Sci. 139, 187–191 (2018). es_ES
dc.description.references Martínez-Álvaro, M., Agha, S., Blasco, A. & Hernández, P. Muscle lipid metabolism in two rabbit lines divergently selected for intramuscular fat. J. Anim. Sci. https://doi.org/10.2527/jas2017.1371 (2017). es_ES
dc.description.references Martínez-Álvaro, M., Paucar, Y., Satué, K., Blasco, A. & Hernández, P. Liver metabolism traits in two rabbit lines divergently selected for intramuscular fat. J. Anim. Sci. 95, 2576–2584 (2017). es_ES
dc.description.references Martínez-Álvaro, M., Blasco, A. & Hernandez, P. Effect of selection for intramuscular fat on the fatty acid composition of rabbit meat. Animal 12, 2002–2008 (2018). es_ES
dc.description.references Zeng, B. et al. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep. 5, 1–8 (2015). es_ES
dc.description.references Feng, Y., Duan, C., Pang, H. & Mo, X. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl. Microbiol. Biotechnol. 75, 319–328, https://doi.org/10.1007/s00253-006-0820-9 (2007). es_ES
dc.description.references Tatusov, R. L. et al. The COG database: an updated vesion includes eukaryotes. BMC Bioinforma. 4, 1–14 (2003). es_ES
dc.description.references Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000). es_ES
dc.description.references Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017). es_ES
dc.description.references Greenacre, M., Grunsky, E. & Bacon-Shone, J. A comparison of isometric and amalgamation logratio balances in compositional data analysis. Comput. Geosci. 148, 104621 (2021). es_ES
dc.description.references Greenacre, M. Variable selection in compositional data analysis using pairwise logratios. Math. Geosci. 51, 649–682 (2018). es_ES
dc.description.references Greenacre, M. Compositional Data Analysis in Practise (CRC Press, 2019). es_ES
dc.description.references Greenacre, M., Martínez-Álvaro, M. & Blasco, A. Compositional data analysis of microbiome and any-omics datasets: a revalidation of the additive logratio transformation. Front. Microbiol. https://doi.org/10.1101/2021.05.15.444300 (2021). es_ES
dc.description.references Barker, M. & Rayens, W. Partial least squares for discrimination. J. Chemom. 17, 166–173 (2003). es_ES
dc.description.references Geladi, P. & Kowalski, B. R. Partial least-squares regression: a tutorial. Anal. Chim. Acta 185, 1–17 (1986). es_ES
dc.description.references Blasco, A. Bayesian Data Analysis for Animal Scientists: The Basics (Springer, 2017). es_ES
dc.description.references Blasco, A. The Bayesian controversy in animal breeding. J. Anim. Sci. 79, 2023–2046 (2001). es_ES
dc.description.references Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011). es_ES
dc.description.references Brun, P. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, 518–525 (2007). es_ES
dc.description.references Cani, P. & Delzenne, N. The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des. 15, 1546–1558 (2009). es_ES
dc.description.references Sutcliffe, I. C., Harrington, D. J. & Hutchings, M. I. A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 3, 163–170 (2012). es_ES
dc.description.references Nakayama, H., Kurokawa, K. & Lee, B. L. Lipoproteins in bacteria: Structures and biosynthetic pathways. FEBS J. 279, 4247–4268 (2012). es_ES
dc.description.references Iwasaki, A. & Modzhitov, R. Regulation of adaptative immunity by the innate immune system. Science 321, 291–295 (2010). es_ES
dc.description.references Rogero, M. M. & Calder, P. C. Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 10, 1–19 (2018). es_ES
dc.description.references Jialal, I., Kaur, H. & Devaraj, S. Toll-like receptor status in obesity and metabolic syndrome: a translation perspective. J. Endocrinol. Metab. 99, 39–48 (2014). es_ES
dc.description.references Severi, E. et al. Sialic acid mutarotation is catalyzed by the Escherichia coli β-propeller protein YjhT. J. Biol. Chem. 283, 4841–4849 (2008). es_ES
dc.description.references Juge, N., Tailford, L. & Owen, C. D. Sialidases from gut bacteria: a mini-review. Biochem. Soc. Trans. 44, 166–175 (2016). es_ES
dc.description.references Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624 (2015). es_ES
dc.description.references Fraser, A. G. Neuraminidase production by Clostridia. J. Med. Microbiol. 11, 269–280 (1978). es_ES
dc.description.references Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia municiphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004). es_ES
dc.description.references Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013). es_ES
dc.description.references Anhê, F. F., Schertzer, J. D., & Marette, A. Bacteria to alleviate metabolic syndrome. Nat. Med. 25, 1030–1031 (2019). es_ES
dc.description.references Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019). es_ES
dc.description.references Kerscher, S., Dröse, S., Zickermann, V. & Brandt, U. The three families of respiratory NADH dehydrogenases. in Results and Problems in Cell Differentiation 45, 185–222 (Springer, 2008). es_ES
dc.description.references Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). es_ES
dc.description.references Million, M. et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 36, 817–825 (2012). es_ES
dc.description.references Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010). es_ES
dc.description.references Luo, Y. H. et al. Lean breed landrace pigs harbor fecal Methanogens at higher diversity and density than obese breed Erhualian pigs. Archaea 2012, 605289 (2012). es_ES
dc.description.references Marty, J. F., Vernay, M. Y. & Abravanel, G. M. Acetate absorption and metabolism in the rabbit hindgut. Gut 26, 562–569 (1985). es_ES
dc.description.references Mika, A. et al. A comprehensive study of serum odd- and branched-chain fatty acids in patients with excess weight. Obesity 24, 1669–1676 (2016). es_ES
dc.description.references Su, X. et al. Adipose tissue monomethyl branched-chain fatty acids and insulin sensitivity: effects of obesity and weight loss. Obesity 23, 329–334 (2015). es_ES
dc.description.references Wahle, K. W. J. & Hare, R. The effect of dietary methyl branched-chain fatty acids on aspects of hepatic lipid metabolism in the rat. Br. J. Nutr. 47, 61 (1982). es_ES
dc.description.references Nishina, P. M. & Freedland, R. A. Effects of propionate on lipid biosynthesis in isolated rat hepatocytes. J. Nutr. 120, 668–673 (1990). es_ES
dc.description.references Sosa-Madrid, S., Martínez-Álvaro, M., Paucar, Y., Hernández, P. & Blasco, A. Efecto de la selección divergente por grasa intramuscular en caracteres de eficiencia alimentaria. in XVII Jornadas sobre Producción Animal 480–482 (AIDA, ITEA, 2017). es_ES
dc.description.references Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). es_ES
dc.description.references Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011). es_ES
dc.description.references Baik, M. et al. Triennial growth and development symposium: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J. Anim. Sci. 95, 2284–2303 (2017). es_ES
dc.description.references Veaudor, T., Cassier-Chauvat, C. & Chauvat, F. Genomics of urea transport and catabolism in cyanobacteria: biotechnological implications. Front. Microbiol. 10, 2052 (2019). es_ES
dc.description.references He, M. et al. Evaluating the contribution of gut microbiota to the variation of porcine fatness with the cecum and fecal samples. Front. Microbiol. 7, 1–13 (2016). es_ES
dc.description.references Sachs, G., Kraut, J. A., Wen, Y., Feng, J. & Scott, D. R. Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J. Membr. Biol. 212, 71–82 (2006). es_ES
dc.description.references Del Fiol, F. S., Balcao, V., Barberate-Fillho, S., Lopes, L. C. & Bergamaschi, C. Obesity: a new adverse effect of antibiotics. Front. Pharmacol. 9, 1408 (2018). es_ES
dc.description.references Safari, Z. et al. Murine genetic background overcomes gut microbiota changes to explain metabolic response to high-fat diet. Nutrients 12, 287 (2020). es_ES
dc.description.references Fujisaka, S. et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J. Clin. Invest. 126, 4430–4443 (2016). es_ES
dc.description.references Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009). es_ES
dc.description.references Prawitt, J. et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 1861–1871 (2011). es_ES
dc.description.references Tobin, C. Removal and replacement of ribosomal proteins (Uppsala University, 2011). es_ES
dc.description.references Greenblum, S., Turnbaugh, P. J. & Borenstein, E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc. Natl Acad. Sci. USA 109, 594–599 (2012). es_ES
dc.description.references Chen, L. et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun. 11, 1–12 (2020). es_ES
dc.description.references Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016). es_ES
dc.description.references Blasco, A. & Ouhayoun, J. Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci. 4, 93–99 (1996). es_ES
dc.description.references Zomeño, C., Juste, V. & Hernández, P. Application of NIRS for predicting fatty acids in intramuscular fat of rabbit. Meat Sci. 91, 155–159 (2012). es_ES
dc.description.references Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). es_ES
dc.description.references Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014). es_ES
dc.description.references Tenenbaum, D. & Maintainer, B. Client-side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG). Bioconductor https://doi.org/10.18129/B9.bioc.KEGGREST (2020). es_ES
dc.description.references Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B Methodol. 44, 139–177 (1982). es_ES
dc.description.references Greenacre, M. Compositional data analysis. Annu. Rev. Stat. Appl. 8, 271–299 (2021). es_ES
dc.description.references Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. Gigascience 8, 1–14 (2019). es_ES
dc.description.references Le Cao, K.-A. et al. mixOmics: Omics Data Integration Project. R package version 6.1.1 (mixOmics, 2016). es_ES
upv.costeAPC 2680 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem