Mostrar el registro sencillo del ítem
dc.contributor.author | Faus, I. | es_ES |
dc.contributor.author | Niñoles Rodenes, Regina | es_ES |
dc.contributor.author | Kesari, V. | es_ES |
dc.contributor.author | Gadea Vacas, José | es_ES |
dc.date.accessioned | 2022-09-30T18:06:57Z | |
dc.date.available | 2022-09-30T18:06:57Z | |
dc.date.issued | 2021-12 | es_ES |
dc.identifier.issn | 0735-9640 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186793 | |
dc.description.abstract | [EN] One of the main mechanisms regulating translation is the one based on the phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2 alpha) by the general control non-repressive 2 (GCN2) protein kinase. In yeast, this kinase binds to two scaffold proteins (GCN1 and GCN20), facilitating its activation on translating ribosomes. The homology of the three proteins exists in Arabidopsis. In this species, whereas the kinase is activated under several stress situations, the involvement of the scaffold proteins in those processes is controversial, and a new role for GCN1 in translation, independent of the phosphorylation of eIF2 alpha, has been proposed. Arabidopsis presents five genes with homology to GCN20 (ABCF1 to 5) in its genome. We show here that any of these five genes is needed for eIF2 alpha phosphorylation. Furthermore, plant phenotypes under abiotic stresses and chloroplast development suggest that ABCF3 is functionally linked with GCN1, but not with GCN2. Finally, gcn1 and abcf3 mutants share similar transcriptional reprogramming, affecting photosynthesis and stress responses. The common downregulation of regulators of the flagellin receptor FLS2 in both mutants suggest that the observed defect in pathogen-associated molecular pattern (PAMP)-induced stomatal closure of these two mutants could be mediated by these proteins. | es_ES |
dc.description.sponsorship | This work was funded by the Spanish Ministerio de Ciencia e Innovacion (MICINN), reference BFU2011-22526. Vigya Kesari thanks the EC for an Erasmus Mundus postdoctoral fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Plant Molecular Biology Reporter | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Transcriptomic | es_ES |
dc.subject | Chloroplast | es_ES |
dc.subject | Arabidopsis translation | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | The ABCF3 Gene of Arabidopsis Is Functionally Linked with GCN1 but Not with GCN2 During Stress and Development | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11105-021-01283-w | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2011-22526/ES/NUEVOS MECANISMOS DE TRANSMISION DE SEÑALES DURANTE EL METABOLISMO DE GLUCOSA Y LA ACIDIFICACION INTRACELULAR: AMPLIANDO LAS FUNCIONES DE LA PROTEINA FOSFATASA 1 Y LA PROTEINA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Faus, I.; Niñoles Rodenes, R.; Kesari, V.; Gadea Vacas, J. (2021). The ABCF3 Gene of Arabidopsis Is Functionally Linked with GCN1 but Not with GCN2 During Stress and Development. Plant Molecular Biology Reporter. 39(4):663-672. https://doi.org/10.1007/s11105-021-01283-w | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11105-021-01283-w | es_ES |
dc.description.upvformatpinicio | 663 | es_ES |
dc.description.upvformatpfin | 672 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 39 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\460369 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMIA Y EMPRESA | es_ES |
dc.description.references | Browning KS (2004) Plant translation initiation factors: it is not easy to be green. Biochem Soc Trans 32(Pt 4):589–591 | es_ES |
dc.description.references | Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843(9):1948–1968 | es_ES |
dc.description.references | Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li CB, Li C (2017) MYC2 orchestrates a hierarchical transcriptional cascade that regulates Jasmonate-mediated plant immunity in tomato. Plant Cell 29(8):1883–1906 | es_ES |
dc.description.references | Faus Niñoles IR, Kesari V, Llabata P, Tam E, Nebauer SG, Santiago J, Hauser MT, Gadea J (2018) Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation. J Plant Physiol 224–225:173–182 | es_ES |
dc.description.references | Faus I, Zabalza A, Santiago J, Nebauer SG, Royuela M, Serrano R, Gadea J (2015) Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC Plant Biol 15:14 | es_ES |
dc.description.references | Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG (2000) Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J 19(8):1887–1899 | es_ES |
dc.description.references | Han TT, Liu WC, Lu YT (2018) General control non-repressible 20 (GCN20) functions in root growth by modulating DNA damage repair in Arabidopsis. BMC Plant Biol 18(1):274 | es_ES |
dc.description.references | Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450 | es_ES |
dc.description.references | Hirose T, Horvitz HR (2014) The translational regulators GCN-1 and ABCF-3 act together to promote apoptosis in C. elegans. PLoS Genet 10(8):e1004512 | es_ES |
dc.description.references | Izquierdo Y, Kulasekaran S, Benito P, López B, Marcos R, Cascón T, Hamberg M, Castresana C (2018) Arabidopsis nonresponding to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that mediates noncanonical translation regulation and stress adaptation. Plant Cell Environ 41(6):1438–1452 | es_ES |
dc.description.references | Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26(6):2285–2309 | es_ES |
dc.description.references | Lageix S, Lanet E, Pouch-Pélissier MN, Espagnol MC, Robaglia C, Deragon JM, Pélissier T (2008) Arabidopsis eIF2alpha kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biol 8:134 | es_ES |
dc.description.references | Lellis AD, Allen ML, Aertker AW, Tran JK, Hillis DM, Harbin CR, Caldwell C, Gallie DR, Browning KS (2010) Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. Plant Mol Biol 74(3):249–263 | es_ES |
dc.description.references | Li MW, AuYeung WK, Lam HM (2013) The GCN2 homologue in Arabidopsis thaliana interacts with uncharged tRNA and uses Arabidopsis eIF2α molecules as direct substrates. Plant Biology (Stuttgart) 15(1):13–18 | es_ES |
dc.description.references | Lintala M, Lehtimäki N, Benz JP, Jungfer A, Soll J, Aro EM, Bölter B, Mulo P (2012) Depletion of leaf-type ferredoxin-NADP(+) oxidoreductase results in the permanent induction of photoprotective mechanisms in Arabidopsis chloroplasts. Plant J 70(5):809–817 | es_ES |
dc.description.references | Marton MJ, Crouch D, Hinnebusch AG (1993) GCN1, a translational activator of GCN4 in Saccharomyces cerevisiae, is required for phosphorylation of eukaryotic translation initiation factor 2 by protein kinase GCN2. Mol Cell Biol 13(6):3541–3556 | es_ES |
dc.description.references | Marton MJ, deAldana CRV, Qiu HF, Chakraburtty K, Hinnebusch AG (1997) Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2 alpha kinase GCN2. Mol Cell Biol 17(8):4474–4489 | es_ES |
dc.description.references | Mayberry LK, Allen ML, Dennis MD, Browning KS (2009) Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. Plant Physiol 150(4):1844–1854 | es_ES |
dc.description.references | Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250(1):3–19 | es_ES |
dc.description.references | Monaghan J, Li X (2010) The HEAT repeat protein ILITYHIA is required for plant immunity. Plant Cell Physiol 51(5):742–753 | es_ES |
dc.description.references | Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99(6):1161–1173 | es_ES |
dc.description.references | Muñoz A, Castellano MM (2012) Regulation of translation initiation under abiotic stress conditions in plants: is it a conserved or not so conserved process among Eukaryotes? Comp Funct Genomics 2012:406357 | es_ES |
dc.description.references | Sánchez-Fernández R, Davies TG, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276(32):30231–30244 | es_ES |
dc.description.references | Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6(7):e21800 | es_ES |
dc.description.references | Tateda C, Zhang Z, Greenberg JT (2015) Linking pattern recognition and salicylic acid responses in Arabidopsis through accelerated cell death6 and receptors. Plant Signal Behav 10(10):e1010912 | es_ES |
dc.description.references | Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129. https://doi.org/10.1093/nar/gkx382 | es_ES |
dc.description.references | Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121 | es_ES |
dc.description.references | Yeh YH, Chang YH, Huang PY, Huang JB, Zimmerli L (2015) Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci 6:322 | es_ES |
dc.description.references | Wang L, Li H, Zhao C, Li S, Kong L, Wu W, Kong W, Liu Y, Wei Y, Zhu JK, Zhang H (2016) The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant Cell Environ 40(1):56–68 | es_ES |
dc.description.references | Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY (2011) A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS Pathogens 7(10) | es_ES |
dc.description.references | Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21(5):599–603. https://doi.org/10.1016/j.copbio.2010.05.006 (Epub 2010 Jun 21) | es_ES |
dc.description.references | Zhang Y, Dickinson JR, Paul MJ, Halford NG (2003) Molecular cloning of an Arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta 217(4):668–675 | es_ES |
dc.description.references | Zhang Y, Wang Y, Kanyuka K, Parry MA, Powers SJ, Halford NG (2008) GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. J Exp Bot 59(11):3131–3141 | es_ES |
dc.description.references | Zhang Z, Shrestha J, Tateda C, Greenberg JT (2014) Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein accelerated cell death6. Mol Plant 7(8):1365–1383 | es_ES |
dc.description.references | Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF et al (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11(6):587–596. https://doi.org/10.1016/j.chom.2012.04.014 | es_ES |