- -

One Step at a Time: The Origins of Sequential Simulation and Beyond

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One Step at a Time: The Origins of Sequential Simulation and Beyond

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.contributor.author Srivastava, R. Mohan es_ES
dc.date.accessioned 2022-09-30T18:07:03Z
dc.date.available 2022-09-30T18:07:03Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 1874-8961 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186796
dc.description.abstract [EN] In the mid-1980s, still in his young 40s, Andre Journel was already recognized as one of the giants of geostatistics. Many of the contributions from his new research program at Stanford University had centered around the indicator methods that he developed: indicator kriging and multiple indicator kriging. But when his second crop of graduate students arrived at Stanford, indicator methods still lacked an approach to conditional simulation that was not tainted by what Andre called the 'Gaussian disease'; early indicator simulations went through the tortuous path of converting all indicators to Gaussian variables, running a turning bands simulation, and truncating the resulting multi-Gaussian realizations. When he conceived of sequential indicator simulation (SIS), even Andre likely did not recognize the generality of an approach to simulation that tackled the simulation task one step at a time. The early enthusiasm for SIS was its ability, in its multiple-indicator form, to cure the Gaussian disease and to build realizations in which spatial continuity did not deteriorate in the extreme values. Much of Stanford's work in the 1980s focused on petroleum geostatistics, where extreme values (the high-permeability fracture zones and the low-permeability shale barriers) have much stronger anisotropy, and much longer ranges of correlation in the maximum continuity direction, than mid-range values. With multi-Gaussian simulations necessarily imparting weaker continuity to the extremes, SIS was an important breakthrough. The generality of the sequential approach was soon recognized, first through its analogy with multi-variate unconditional simulation achieved using the lower triangular matrix of an LU decomposition of the covariance matrix as the multiplier of random normal deviates. Modifying LU simulation so that it became conditional gave rise to sequential Gaussian simulation (SGS), an algorithm that shared much in common with SIS. With nagging implementation details like the sequential path and the search neighborhood being common to both methods, improvements in either SIS or SGS often became improvements to the other. Almost half of the contributors to this Special Issue became students of Andre in the classes of 1984-1988, and several are the pioneers of SIS and SGS. Others who studied later with Andre explored and developed the first multipoint statistics simulation procedures, which are based on the same concept that underlies sequential simulation. Among his many significant intellectual accomplishments, one of the cornerstones of Andre Journel's legacy was sequential simulation, built one step at a time. es_ES
dc.description.sponsorship The first author wishes to acknowledge the financial contribution of the Spanish Ministry of Science and Innovation through Project Number PID2019-109131RB-I00. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mathematical Geosciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Random functions es_ES
dc.subject Large grids es_ES
dc.subject Stochastic processes es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title One Step at a Time: The Origins of Sequential Simulation and Beyond es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11004-021-09926-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109131RB-I00/ES/APRENDIZAJE AUTOMATICO PARA HIDROGEOLOGOS FORENSES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Gómez-Hernández, JJ.; Srivastava, RM. (2021). One Step at a Time: The Origins of Sequential Simulation and Beyond. Mathematical Geosciences. 53(2):193-209. https://doi.org/10.1007/s11004-021-09926-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11004-021-09926-0 es_ES
dc.description.upvformatpinicio 193 es_ES
dc.description.upvformatpfin 209 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\430131 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Alabert FG (1987) The practice of fast conditional simulations through the lu decomposition of the covariance matrix. Math Geol 19(5):369–387 es_ES
dc.description.references Anderson TW (1984) Multivariate statistical analysis. Wiley, New York es_ES
dc.description.references Armstrong M, Galli A, Beucher H, Loc’h G, Renard D, Doligez B, Eschard R, Geffroy F (2011) Plurigaussian simulations in geosciences. Springer, Berlin es_ES
dc.description.references Arpat GB (2005) Sequential simulation with patterns. Ph.D. thesis, Stanford University es_ES
dc.description.references Arpat GB, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177–203 es_ES
dc.description.references Bratley P, Fox BL, Schrage LE (1983) A guide to simulation. Springer, New York es_ES
dc.description.references Carle SF (1999) T-progs: transition probability geostatistical software. University of California, Davis, p 84 es_ES
dc.description.references Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476 es_ES
dc.description.references Davis MW (1987) Production of conditional simulations via the LU triangular decomposition of the covariance matrix. Math Geol 19(2):91–98 es_ES
dc.description.references Deutsch CV, Journel AG (1992) GSLIB. Geostatistical software library and user’s guide. Oxford University Press, New York es_ES
dc.description.references Dimitrakopoulos R, Luo X (2004) Generalized sequential gaussian simulation on group size $$\nu $$ and screen-effect approximations for large field simulations. Math Geol 36(5):567–591 es_ES
dc.description.references Dimitrakopoulos R, Mustapha H, Gloaguen E (2010) High-order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-gaussian and non-linear phenomena. Math Geosci 42(1):65 es_ES
dc.description.references Durstenfeld R (1964) Algorithm 235: random permutation. Commun ACM 7(7):420 es_ES
dc.description.references Fu J, Gómez-Hernández JJ (2009) A blocking Markov chain Monte Carlo method for inverse stochastic hydrogeological modeling. Math Geosci 41:105–128. https://doi.org/10.1007/s11004-008-9206-0 es_ES
dc.description.references Galli A, Beucher H, Le Loc’h G, Doligez B, et al (1994) The pros and cons of the truncated gaussian method. In: Geostatistical simulations. Springer, pp 217–233 es_ES
dc.description.references Gómez-Hernández JJ (1989) Indicator conditional simulation of the architecture of hydraulic conductivity fields: application to a sand-shale sequence. In: Sahuquillo A, Andréu J, O’Donnell T (eds) Groundwater management: quantity and quality, vol 188. International Association of Hydrological Sciences, Wallingford, pp 41–51 es_ES
dc.description.references Gómez-Hernández JJ, Cassiraga EF (1994) Theory and practice of sequential simulation. In: Armstrong M, Dowd P (eds) Geostatistical simulations. Kluwer Academic Publishers, Dordrecht, pp 111–124 es_ES
dc.description.references Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multi-gaussian fields. In: Soares A (ed) Geostatistics Tróia’92, vol 1. Kluwer Academic Publishers, Dordrecht, pp 85–94 es_ES
dc.description.references Gómez-Hernández JJ, Srivastava RM (1990) ISIM3D: an ANSI-C three dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440 es_ES
dc.description.references Gómez-Hernández JJ, Wen XH (1994) Probabilistic assessment of travel times in groundwater modeling. J Stoch Hydrol Hydraul 8(1):19–56 es_ES
dc.description.references Guardiano FB, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate models. In: Soares A (ed) Geostatistics Tróia’92, vol 1. Kluwer, Dordrecht, pp 133–144 es_ES
dc.description.references Hu LY (2000) Gradual deformation and iterative calibration of gaussian-related stochastic models. Math Geol 32(1):87–108 es_ES
dc.description.references Johnson ME (1987) Multivariate statistical simulation: a guide to selecting and generating continuous multivariate distributions, vol 192. Wiley, Hoboken es_ES
dc.description.references Journel AG (1974) Geostatistics for conditional simulation of ore bodies. Econ Geol 69(5):673–687 es_ES
dc.description.references Journel A (1982) The indicator approach to estimation of spatial distributions. In: Proceedings of the 17th APCOM international symposium, New York, pp 793–806 es_ES
dc.description.references Journel AG (1983) Nonparametric estimation of spatial distributions. J Int Assoc Math Geol 15(3):445–468 es_ES
dc.description.references Journel AG (1989) Fundamentals of geostatistics in five lessons, short courses in geology, vol 8. AGU, Washington, DC es_ES
dc.description.references Journel AG (1994) Modeling uncertainty: some conceptual thoughts. In: Geostatistics for the next century. Springer, pp 30–43 es_ES
dc.description.references Journel AG (2005) Beyond covariance: the advent of multiple-point geostatistics. In: Geostatistics Banff 2004. Springer, pp 225–233 es_ES
dc.description.references Journel AG, Gómez-Hernández JJ (1993) Stochastic imaging of the Wilmington clastic sequence. SPE Form Eval Mar 93:33–40 es_ES
dc.description.references Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London es_ES
dc.description.references Journel AG, Isaaks EH (1984) Conditional indicator simulation: application to a Saskatchewan uranium deposit. Math Geol 16(7):685–718 es_ES
dc.description.references Liu Y, Journel A (2004) Improving sequential simulation with a structured path guided by information content. Math Geol 36(8):945–964 es_ES
dc.description.references Mahmud K, Mariethoz G, Caers J, Tahmasebi P, Baker A (2014) Simulation of earth textures by conditional image quilting. Water Resour Res 50(4):3088–3107 es_ES
dc.description.references Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley, Hoboken es_ES
dc.description.references Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46:11 es_ES
dc.description.references Matérn B (1960) Spatial variation. Meddelanden fran Statens Skogsforskningsinstitut 49 es_ES
dc.description.references (5) (2nd Edition (1986), Lecture Notes in Statistics, No. 36, Springer, New York es_ES
dc.description.references Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Prob 5(3):439–468 es_ES
dc.description.references Meerschman E, Pirot G, Mariethoz G, Straubhaar J, Van Meirvenne M, Renard P (2013) A practical guide to performing multiple-point statistical simulations with the direct sampling algorithm. Comput Geosci 52:307–324 es_ES
dc.description.references Minniakhmetov I, Dimitrakopoulos R (2017) Joint high-order simulation of spatially correlated variables using high-order spatial statistics. Math Geosci 49(1):39–66 es_ES
dc.description.references Minniakhmetov I, Dimitrakopoulos R, Godoy M (2018) High-order spatial simulation using legendre-like orthogonal splines. Math Geosci 50(7):753–780 es_ES
dc.description.references Mustapha H, Dimitrakopoulos R (2010) High-order stochastic simulation of complex spatially distributed natural phenomena. Math Geosci 42(5):457–485 es_ES
dc.description.references Mustapha H, Dimitrakopoulos R (2011) Hosim: a high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns. Comput Geosci 37(9):1242–1253 es_ES
dc.description.references Nowak M, Srivastava R (1997) A geological conditional simulation algorithm that exactly honours a predefined grade-tonnage curve. Proc Geostat Wollongong 96:669–682 es_ES
dc.description.references Nussbaumer R, Mariethoz G, Gloaguen E, Holliger K (2018) Which path to choose in sequential gaussian simulation. Math Geosci 50(1):97–120 es_ES
dc.description.references Oz B, Deutsch CV, Tran TT, Xie Y (2003) DSSIM-HR: a FORTRAN 90 program for direct sequential simulation with histogram reproduction. Comput Geosci 29(2003):39–51 es_ES
dc.description.references Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472 es_ES
dc.description.references Shinozuka M, Jan CM (1972) Digital simulation of random processes and its applications. J Sound Vib 25(1):111–128 es_ES
dc.description.references Soares A (2001) Direct sequential simulation and cosimulation. Math Geol 33(8):911–926 es_ES
dc.description.references Strebelle S (2000) Sequential simulation drawing structures from training images. Ph.D. thesis, Stanford University, 187pp es_ES
dc.description.references Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21 es_ES
dc.description.references Verly GW (1993) Sequential gaussian cosimulation: a simulation method integrating several types of information. In: Soares A (ed) Geostatistics Tróia’92, vol 1. Kluwer, Dordrecht, pp 543–554 es_ES
dc.description.references Yao L, Dimitrakopoulos R, Gamache M (2021) Training image free high-order stochastic simulation based on aggregated kernel statistics. Math Geosci. https://doi.org/10.1007/s11004-021-09923-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem