Mostrar el registro sencillo del ítem
dc.contributor.author | Abrahao Gonzales, Silvia Mara | es_ES |
dc.contributor.author | Insfran, Emilio | es_ES |
dc.contributor.author | Sluyters, Arthur | es_ES |
dc.contributor.author | Vanderdonckt, Jean | es_ES |
dc.date.accessioned | 2022-09-30T18:07:07Z | |
dc.date.available | 2022-09-30T18:07:07Z | |
dc.date.issued | 2021-10 | es_ES |
dc.identifier.issn | 1619-1366 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/186800 | |
dc.description.abstract | [EN] Adapting the user interface of a software system to the requirements of the context of use continues to be a major challenge, particularly when users become more demanding in terms of adaptation quality. A considerable number of methods have, over the past three decades, provided some form of modelling with which to support user interface adaptation. There is, however, a crucial issue as regards in analysing the concepts, the underlying knowledge, and the user experience afforded by these methods as regards comparing their benefits and shortcomings. These methods are so numerous that positioning a new method in the state of the art is challenging. This paper, therefore, defines a conceptual reference framework for intelligent user interface adaptation containing a set of conceptual adaptation properties that are useful for model-based user interface adaptation. The objective of this set of properties is to understand any method, to compare various methods and to generate new ideas for adaptation. We also analyse the opportunities that machine learning techniques could provide for data processing and analysis in this context, and identify some open challenges in order to guarantee an appropriate user experience for end-users. The relevant literature and our experience in research and industrial collaboration have been used as the basis on which to propose future directions in which these challenges can be addressed. | es_ES |
dc.description.sponsorship | This work is supported by the Spanish Ministry of Science, Innovation, and Universities under Grant No.: TIN2017-84550-R, Adapt@Cloud Project and by the Generalitat Valenciana under Grant No.: AICO/2020/113, UX-Adapt Project. Arthur Sluyters is funded by the "Fonds de la Recherche Scientifique - FNRS" under Grant n40001931. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Software & Systems Modeling | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Context of use | es_ES |
dc.subject | Intelligent user interface | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Model-based software engineering | es_ES |
dc.subject | Model-driven engineering | es_ES |
dc.subject | User interface adaptation | es_ES |
dc.subject | Conceptual reference framework | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Model-based Intelligent User Interface Adaptation: Challenges and Future Directions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10270-021-00909-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84550-R/ES/ADAPTACION DINAMICA DE SERVICIOS CLOUD CENTRADA EN EL USUARIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FNRS//n40001931/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2020%2F113//ADAPTACIÓN DE SERVICIOS CLOUD DIRIGIDA POR LA EXPERIENCIADEL USUARIO (UX-ADAPT)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Abrahao Gonzales, SM.; Insfran, E.; Sluyters, A.; Vanderdonckt, J. (2021). Model-based Intelligent User Interface Adaptation: Challenges and Future Directions. Software & Systems Modeling. 20(5):1335-1349. https://doi.org/10.1007/s10270-021-00909-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10270-021-00909-7 | es_ES |
dc.description.upvformatpinicio | 1335 | es_ES |
dc.description.upvformatpfin | 1349 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\441202 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Fonds de la Recherche Scientifique, Belgica | es_ES |
dc.description.references | Abrahão, S., Bourdeleau, F., Cheng, B.H.C., Kokaly, S., Paige, R.F., Störrle, H., Whittle, J.: User experience for model-driven engineering: Challenges and future directions. In: Proceedings of the 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS 2017, Austin, TX, USA, September 17-22, 2017, pp. 229–236. IEEE Computer Society (2017). https://doi.org/10.1109/MODELS.2017.5 | es_ES |
dc.description.references | Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user interface development systems. ACM Comput. Surv. 47(1), 91–933 (2014). https://doi.org/10.1145/2597999 | es_ES |
dc.description.references | Akiki, P.A., Bandara, A.K., Yu, Y.: Engineering adaptive model-driven user interfaces. IEEE Trans. Softw. Eng. 42(12), 1118–1147 (2016). https://doi.org/10.1109/TSE.2016.2553035 | es_ES |
dc.description.references | Alvarez-Cortes, V., Zarate, V.H., Ramirez Uresti, J.A., Zayas, B.E.: Current challenges and applications for adaptive user interfaces. In: I. Maurtua (ed.) Human-Computer Interaction, chap. 3, pp. 49–68. IntechOpen, London, UK (2009). https://doi.org/10.5772/7745. https://www.intechopen.com/books/human-computer-interaction/current-challenges-and-applications-for-adaptive-user-interfaces | es_ES |
dc.description.references | Blouin, A., Morin, B., Beaudoux, O., Nain, G., Albers, P., Jézéquel, J.M.: Combining aspect-oriented modeling with property-based reasoning to improve user interface adaptation. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’11, p. 85–94. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1996461.1996500 | es_ES |
dc.description.references | Bouillon, L., Limbourg, Q., Vanderdonckt, J., Michotte, B.: Reverse engineering of web pages based on derivations and transformations. In: Proceedings of Third Latin American Web Congress, LA-WEB ’05, pp. 11. IEEE Computer Society Press, Piscataway, USA (2005). https://doi.org/10.1109/LAWEB.2005.29 | es_ES |
dc.description.references | Bouzit, S., Calvary, G., Coutaz, J., Chêne, D., Petit, E., Vanderdonckt, J.: The PDA-LPA design space for user interface adaptation. In: Proceedings of the 11th IEEE International Conference on Research Challenges in Information Science, RCIS ’17, pp. 353–364. IEEE Press, Hoboken, New Jersey, USA (2017). https://doi.org/10.1109/RCIS.2017.7956559 | es_ES |
dc.description.references | Browne, D., Totterdell, P., Norman, M. (eds.): Adaptive User Interfaces. Computers and People Series. Academic Press, London, UK (1990) | es_ES |
dc.description.references | Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A unifying reference framework for multi-target user interfaces. Interact. Comput. 15(3), 289–308 (2003). https://doi.org/10.1016/S0953-5438(03)00010-9 | es_ES |
dc.description.references | Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Bouillon, L., Florins, M., Vanderdonckt, J.: Plasticity of user interfaces: A revised reference framework. In: Proceedings of the First International Workshop on Task Models and Diagrams for User Interface Design, TAMODIA ’02, p. 127–134. INFOREC Publishing House Bucharest (2002). https://doi.org/10.5555/646617.697235 | es_ES |
dc.description.references | Coutaz, J.: Meta-user interfaces for ambient spaces. In: Coninx, K., Luyten, K., Schneider, K.A. (eds.) Task Models and Diagrams for Users Interface Design, pp. 1–15. Springer, Berlin (2007) | es_ES |
dc.description.references | Dessart, C.E., Genaro Motti, V., Vanderdonckt, J.: Showing user interface adaptivity by animated transitions. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’11, pp. 95–104. ACM, New York, NY, USA (2011). https://doi.org/10.1145/1996461.1996501 | es_ES |
dc.description.references | Dieterich, H., Malinowski, U., Kuhme, T., Schneider-Hufschmidt, M.: State of the art in adaptive user interfaces. In: M. Schneider-Hufschmidt, T. Kuhme, U. Malinowski (eds.) Adaptive User Interfaces Principles and Practice, chap. 10, pp. 13–48. Elsevier Science Publishers, Amsterdam (1994). https://www.elsevier.com/books/adaptive-user-interfaces/schneider-hufschmidt/978-0-444-81545-3 | es_ES |
dc.description.references | Furtado, E., Furtado, V., Silva, W.B., Rodrigues, D.W.T., da Silva Taddeo, L., Limbourg, Q., Vanderdonckt, J.: An ontology-based method for designing multiple user interfaces. In: Proceedings of International Workshop on Multiple User Interfaces, MUI’ 01 (2001). https://www.researchgate.net/publication/2567741_An_Ontology-Based_Method_for_Universal_Design_of_User_Interfaces | es_ES |
dc.description.references | Gajos, K.Z., Chauncey, K.: The influence of personality traits and cognitive load on the use of adaptive user interfaces. In: Proceedings of the 22Nd International Conference on Intelligent User Interfaces, IUI ’17, pp. 301–306. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3025171.3025192 | es_ES |
dc.description.references | García Frey, A., Calvary, G., Dupuy-Chessa, S., Mandran, N.: Model-based self-explanatory uis for free, but are they valuable? In: P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, M. Winckler (eds.) Human-Computer Interaction–INTERACT 2013–14th IFIP TC 13 International Conference, Cape Town, South Africa, September 2-6, 2013, Proceedings, Part III, Lecture Notes in Computer Science, vol. 8119, pp. 144–161. Springer (2013). https://doi.org/10.1007/978-3-642-40477-1_9 | es_ES |
dc.description.references | Horvitz, E.: Principles of mixed-initiative user interfaces. In: Proceeding of the ACM International Conference on Human Factors in Computing Systems, CHI ’99, pp. 159–166. ACM, New York, NY, USA (1999). https://doi.org/10.1145/302979.303030 | es_ES |
dc.description.references | Hui, B., Partridge, G., Boutilier, C.: A probabilistic mental model for estimating disruption. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI ’09, p. 287–296. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1502650.1502691 | es_ES |
dc.description.references | ISO: ISO/IEC 25010: Software Quality Product Standard. standard, International Standard Organization, Geneva (2019). https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0 | es_ES |
dc.description.references | Kühme, T., Dieterich, H., Malinowski, U., Schneider-Hufschmidt, M.: Approaches to adaptivity in user interface technology: Survey and taxonomy. In: Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for Human-Computer Interaction, pp. 225–252. North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands (1992). https://doi.org/10.5555/647103.717564. http://dl.acm.org/citation.cfm?id=647103.717564 | es_ES |
dc.description.references | Lavie, T., Meyer, J.: Benefits and costs of adaptive user interfaces. Int. J. Human Comput. Stud. 68(8), 508–524 (2010) https://doi.org/10.1016/j.ijhcs.2010.01.004. http://www.sciencedirect.com/science/article/pii/S1071581910000145 | es_ES |
dc.description.references | López-Jaquero, V., Simarro, F.M., González, P.: AB-HCI: an interface multi-agent system to support human-centred computing. IET Softw. 3(1), 14–25 (2009). https://doi.org/10.1049/iet-sen:20070108 | es_ES |
dc.description.references | López-Jaquero, V., Vanderdonckt, J., Simarro, F.M., González, P.: Towards an extended model of user interface adaptation: The ISATINE framework. In: J. Gulliksen, M.B. Harning, P.A. Palanque, G.C. van der Veer, J. Wesson (eds.) Proceedings of the Joint Working Conferences on Engineering Interactive Systems, EIS’07-EHCI’07-DSV-IS’07-HCSE’07, Salamanca, Spain, March 22–24, 2007, Lecture Notes in Computer Science, vol. 4940, pp. 374–392. Springer (2007). https://doi.org/10.1007/978-3-540-92698-6_23. https://link.springer.com/chapter/10.1007/978-3-540-92698-6_23 | es_ES |
dc.description.references | Martínez-Ruiz, F.J., Arteaga, J.M., Vanderdonckt, J., González-Calleros, J.M., González, R.M.: A first draft of a model-driven method for designing graphical user interfaces of rich internet applications. In: J.A. Sánchez (ed.) Fourth Latin American Web Congress (LA-Web 2006), 25–27 October 2006, Cholula, Puebla, Mexico, pp. 32–38. IEEE Computer Society (2006). https://doi.org/10.1109/LA-WEB.2006.1 | es_ES |
dc.description.references | McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive software. Computer 37(7), 56–64 (2004). https://doi.org/10.1109/MC.2004.48 | es_ES |
dc.description.references | Melchior, J., Vanderdonckt, J., Roy, P.V.: A comparative evaluation of user preferences for extra-user interfaces. Int. J. Hum. Comput. Interact. 28(11), 760–767 (2012). https://doi.org/10.1080/10447318.2012.715544 | es_ES |
dc.description.references | Mezhoudi, N., Vanderdonckt, J.: Toward a task-driven intelligent GUI adaptation by mixed-initiative. Int. J. Hum. Comput. Interact. (2020). https://doi.org/10.1080/10447318.2020.1824742 | es_ES |
dc.description.references | Motti, V.G., Vanderdonckt, J.: A computational framework for context-aware adaptation of user interfaces. In: Proceedings of the 7th IEEE International Conference on Research Challenges in Information Science, RCIS ’13, pp. 1–12 (2013). https://doi.org/10.1109/RCIS.2013.6577709 | es_ES |
dc.description.references | Nichols, J.: Using the crowd to understand and adapt user interfaces. In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’13, pp. 1–2. ACM, New York, NY, USA (2013). https://doi.org/10.1145/2494603.2480344 | es_ES |
dc.description.references | Nierstrasz, O., Meijler, T.D.: Research directions in software composition. ACM Comput. Surv. 27(2), 262–264 (1995). https://doi.org/10.1145/210376.210389 | es_ES |
dc.description.references | Nivethika, M., Vithiya, I., Anntharshika, S., Deegalla, S.: Personalized and adaptive user interface framework for mobile application. In: Proceedings of International Conference on Advances in Computing, Communications and Informatics, ICACCI ’13, pp. 1913–1918. IEEE Press, Piscataway, USA (2013). https://doi.org/10.1109/ICACCI.2013.6637474 | es_ES |
dc.description.references | Paramythis, A., Weibelzahl, S., Masthoff, J.: Layered evaluation of interactive adaptive systems: framework and formative methods. User Model. User Adapt. Interact. 20(5), 383–453 (2010). https://doi.org/10.1007/s11257-010-9082-4 | es_ES |
dc.description.references | Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Fact. 39(2), 230–253 (1997). https://doi.org/10.1518/001872097778543886 | es_ES |
dc.description.references | Schlee, M., Vanderdonckt, J.: Generative programming of graphical user interfaces. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’04, p. 403–406. Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/989863.989936 | es_ES |
dc.description.references | Sluÿters, A., Vanderdonckt, J., Vatavu, R.D.: Engineering slidable graphical user interfaces with slime. Proc. ACM Hum. Comput. Interact. (2021). https://doi.org/10.1145/3457147 | es_ES |
dc.description.references | Sottet, J.S., Calvary, G., Coutaz, J., Favre, J.M.: A model-driven engineering approach for the usability of plastic user interfaces. In: Gulliksen, J., Harning, M.B., Palanque, P., van der Veer, G.C., Wesson, J. (eds.) Engineering Interactive Systems, pp. 140–157. Springer, Berlin (2008) | es_ES |
dc.description.references | Teevan, J., Dumais, S.T., Liebling, D.J., Hughes, R.L.: Changing how people view changes on the web. In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, UIST ’09, p. 237–246. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1622176.1622221 | es_ES |
dc.description.references | Todi, K., Bailly, G., Leiva, L., Oulasvirta, A.: Adapting user interfaces with model-based reinforcement learning. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445497 | es_ES |
dc.description.references | Vanderdonckt, J., González-Calleros, J.M.: Task-driven plasticity: One step forward with ubidraw. In: P. Forbrig, F. Paternò (eds.) Engineering Interactive Systems, Proceedings of Second Conference on Human-Centered Software Engineering, HCSE 2008, and 7th International Workshop on Task Models and Diagrams, TAMODIA 2008, Pisa, Italy, September 25–26, 200, Lecture Notes in Computer Science, vol. 5247, pp. 181–196. Springer (2008). https://doi.org/10.1007/978-3-540-85992-5_16 | es_ES |
dc.description.references | Vatavu, R.: Nomadic gestures: A technique for reusing gesture commands for frequent ambient interactions. J. Ambient Intell. Smart Environ. 4(2), 79–93 (2012). https://doi.org/10.3233/AIS-2012-0137 | es_ES |
dc.description.references | van Velsen, L., van der Geest, T., Klaassen, R., Steehouder, M.F.: User-centered evaluation of adaptive and adaptable systems: a literature review. Knowl. Eng. Rev. 23(3), 261–281 (2008)https://doi.org/10.1017/S0269888908001379. https://www.cambridge.org/core/journals/knowledge-engineering-review/article/abs/usercentered-evaluation-of-adaptive-and-adaptable-systems-a-literature-review/C77A0D4AE8BAF5808E55214884245965 | es_ES |
dc.description.references | Yigitbas, E., Jovanovikj, I., Biermeier, K., Sauer, S., Engels, G.: Integrated model-driven development of self-adaptive user interfaces. Softw. Syst. Model. 19(5), 1057–1081 (2020). https://doi.org/10.1007/s10270-020-00777-7 | es_ES |
dc.description.references | Yigitbas, E., Sauer, S.: Engineering context-adaptive UIs for task-continuous cross-channel applications. In: Human-Centered and Error-Resilient Systems Development—IFIP WG 13.2/13.5 Joint Working Conference HCSE 2016 and HESSD 2016 Stockholm, Sweden, August 29–31, 2016, Proceedings, pp. 281–300. Springer (2016). https://doi.org/10.1007/978-3-319-44902-9_18 | es_ES |