Rego Mañez, A.; Sendra, S.; García-García, L.; Lloret, J. (2019). Adapting reinforcement learning for multimedia transmission on SDN. Transactions on Emerging Telecommunications Technologies. 30(9):1-15. https://doi.org/10.1002/ett.3643
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/186852
Title:
|
Adapting reinforcement learning for multimedia transmission on SDN
|
Author:
|
Rego Máñez, Albert
Sendra, Sandra
García-García, Laura
Lloret, Jaime
|
UPV Unit:
|
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
|
Issued date:
|
|
Abstract:
|
[EN] Multimedia transmissions require a high quantity of resources to ensure their quality. In the last years, some technologies that provide a better resource management have appeared. Software defined networks (SDNs) are ...[+]
[EN] Multimedia transmissions require a high quantity of resources to ensure their quality. In the last years, some technologies that provide a better resource management have appeared. Software defined networks (SDNs) are presented as a solution to improve this management. Furthermore, combining SDN with artificial intelligence (AI) techniques, networks are able to provide a higher performance using the same resources. In this paper, a redefinition of reinforcement learning is proposed. This model is focused on multimedia transmission in a SDN environment. Moreover, the architecture needed and the algorithm of the reinforcement learning are described. Using the Openflow protocol, several sample actions are defined in the system. Results show that using the system users perceive an increase in the image quality three times better. Moreover, the loss rate is reduced more than half the value of losses recorded when the algorithm is not applied. Regarding bandwidth, the maximum throughput increases from 987.16 kbps to 24.73 Mbps while the average bandwidth improves from 412.42 kbps to 7.83 Mbps.
[-]
|
Subjects:
|
Software Defined Network (SDN)
,
Machine Learning
,
Reinforcement Learning
,
Artificial Intelligence (AI)
,
Multimedia
,
Openflow
,
Protocol
,
Routing
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Transactions on Emerging Telecommunications Technologies. (eissn:
2161-3915
)
|
DOI:
|
10.1002/ett.3643
|
Publisher:
|
John Wiley & Sons
|
Publisher version:
|
https://doi.org/10.1002/ett.3643
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/
info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/
info:eu-repo/grantAgreement/MECD//FPU15%2F06837/ES/FPU15%2F06837/
info:eu-repo/grantAgreement/MINECO//TEC2016-76795-C6-4-R/ES/GESTION FLEXIBLE DE SERVICIOS 5G ORIENTADA A SOPORTAR SITUACIONES CRITICAS URBANAS/
|
Thanks:
|
Ayudas para contratos predoctorales de Formación del Profesorado Universitario FPU (Convocatoria 2015), Grant/Award Number: FPU15/06837; Programa Estatal de Investigación Científica y Técnica de Excelencia (Convocatoria ...[+]
Ayudas para contratos predoctorales de Formación del Profesorado Universitario FPU (Convocatoria 2015), Grant/Award Number: FPU15/06837; Programa Estatal de Investigación Científica y Técnica de Excelencia (Convocatoria 2017), Grant/Award Number: TIN2017-84802-C2-1-P; Programa Estatal De Investigación, Desarrollo e Innovación Orientada a los retos de la sociedad (Convocatoria 2016), Grant/Award Number: TEC2016-76795-C6-4-R; ERANETMED, Grant/Award Number: ERANETMED3-227 SMARTWATIR
[-]
|
Type:
|
Artículo
|