Mostrar el registro sencillo del ítem
dc.contributor.author | Furlan, Walter D. | es_ES |
dc.contributor.author | Montagud-Martínez, Diego | es_ES |
dc.contributor.author | Ferrando, Vicente | es_ES |
dc.contributor.author | Garcia-Delpech, Salvador | es_ES |
dc.contributor.author | Monsoriu Serra, Juan Antonio | es_ES |
dc.date.accessioned | 2022-10-05T18:03:16Z | |
dc.date.available | 2022-10-05T18:03:16Z | |
dc.date.issued | 2021-03-23 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/187090 | |
dc.description.abstract | [EN] Corneal inlays (CIs) are the most recent surgical procedure for the treatment of presbyopia in patients who want complete independence from the use of glasses or contact lenses. Although refractive surgery in presbyopic patients is mostly performed in combination with cataract surgery, when the implantation of an intraocular lens is not necessary, the option of CIs has the advantage of being minimally invasive. Current designs of CIs are, either: small aperture devices, or refractive devices, however, both methods do not have good performance simultaneously at intermediate and near distances in eyes that are unable to accommodate. In the present study, we propose the first design of a trifocal CI, allowing good vision, at the same time, at far, intermediate and near vision in presbyopic eyes. We first demonstrate the good performance of the new inlay in comparison with a commercially available CI by using optical design software. We next confirm experimentally the image forming capabilities of our proposal employing an adaptive optics based optical simulator. This new design also has a number of parameters that can be varied to make personalized trifocal CI, opening up a new avenue for the treatment of presbyopia. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Ciencia e Innovacion, Spain (Grant PID2019-107391RB-I00) and by Generalitat Valenciana, Spain, (Grant PROMETEO/2019/048). D. Montagud-Martinez and V. Ferrando acknowledge the financial support from the Universitat Politecnica de Valencia, Spain (fellowships FPI-2016 and PAID-10-18, respectively) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | A new trifocal corneal inlay for presbyopia | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-021-86005-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107391RB-I00/ES/APLICACIONES BIOFOTONICAS DE LENTES DIFRACTIVAS ESCTRUCTURADAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-2016/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO%2F2019%2F048//Fibras Ópticas y Procesado de Señal (FOPS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-18//Programa de Ayudas de Investigación y Desarrollo/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Furlan, WD.; Montagud-Martínez, D.; Ferrando, V.; Garcia-Delpech, S.; Monsoriu Serra, JA. (2021). A new trifocal corneal inlay for presbyopia. Scientific Reports. 11(1):1-8. https://doi.org/10.1038/s41598-021-86005-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-021-86005-8 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 33758219 | es_ES |
dc.identifier.pmcid | PMC7987980 | es_ES |
dc.relation.pasarela | S\431271 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Fricke, T. R. et al. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: Systematic review, meta-analysis, and modelling. Ophthalmology 125, 1492–1499 (2018). | es_ES |
dc.description.references | Charman, W. N. Developments in the correction of presbyopia II: Surgical approaches. Ophthal. Physiol. Opt. 34, 397–426 (2014). | es_ES |
dc.description.references | Moarefi, M. A., Bafna, S. & Wiley, W. A review of presbyopia treatment with corneal inlays. Opthamol. Ther. 6, 55–65 (2017). | es_ES |
dc.description.references | Beer, S. M. C. et al. A 3-year follow-up study of a new corneal inlay: Clinical results and outcomes. Brit. J. Ophthalmol. 104, 723–728 (2020). | es_ES |
dc.description.references | Limnopoulou, A. N. et al. Visual outcomes and safety of a refractive corneal inlay for presbyopia using femtosecond laser. J. Refract. Surg. 29, 12–18 (2013). | es_ES |
dc.description.references | Garza, E. B., Gomez, S., Chayet, A. & Dishler, J. One-year safety and efficacy results of a hydrogel inlay to improve near vision in patients with emmetropic presbyopia. J. Refract. Surg. 29, 166–172 (2013). | es_ES |
dc.description.references | Malandrini, A. et al. Bifocal refractive corneal inlay implantation to improve near vision in emmetropic presbyopic patients. J. Cataract Refract. Surg. 41, 1962–1972 (2015). | es_ES |
dc.description.references | Waring, G. O. Correction of presbyopia with a small aperture corneal inlay. J. Refract. Surg. 27, 842–845 (2011). | es_ES |
dc.description.references | Vilupuru, S., Lin, L. & Pepose, J. S. Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects. Am. J. Ophthalmol. 160, 150–162 (2015). | es_ES |
dc.description.references | Vukich, J. A. et al. Evaluation of the small-aperture intracorneal inlay: Three-year results from the cohort of the US Food and Drug Administration clinical trial. J. Cataract. Refract. Surg. 44, 541–556 (2018). | es_ES |
dc.description.references | Beer, S. M. et al. One-year clinical outcomes of a corneal inlay for presbyopia. Cornea 36, 816–820 (2017). | es_ES |
dc.description.references | Pinsky, P. M. Three-dimensional modeling of metabolic species transport in the cornea with a hydrogel intrastromal inlay. Invest. Ophthalmol. Vis. Sci. 55, 3093–3106 (2014). | es_ES |
dc.description.references | Gilchrist, J. & Pardhan, S. Binocular contrast detection with unequal monocular illuminance. Ophthal. Phys. Opt. 7, 373–377 (1987). | es_ES |
dc.description.references | Plainis, S. et al. Small aperture monovision and the Pulfrich experience: Absence of neural adaptation effects. PLoS One 8, e75987. https://doi.org/10.1371/journal.Pone.0075987 (2013). | es_ES |
dc.description.references | Castro, J. J., Ortiz, C., Jiménez, J. R., Ortiz-Peregrina, S. & Casares-López, M. Stereopsis simulating small-aperture corneal inlay and Monovision conditions. J. Refract. Surg. 34, 482–488 (2018). | es_ES |
dc.description.references | Furlan, W. D. et al. Diffractive corneal inlay for presbyopia. J. Biophoton. 10, 1110–1114 (2017). | es_ES |
dc.description.references | Kipp, L. et al. Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184–188 (2001). | es_ES |
dc.description.references | Andersen, G. Large optical photon sieve. Opt. Lett. 30, 2976–2978 (2005). | es_ES |
dc.description.references | Menon, R., Gil, D., Barbastathis, G. & Smith, H. I. Photon-sieve lithography. J. Opt. Soc. Am. A 22, 342–345 (2005). | es_ES |
dc.description.references | Giménez, F., Monsoriu, J. A., Furlan, W. D. & Pons, A. Fractal photon sieve. Opt. Express 14, 11958–11963 (2006). | es_ES |
dc.description.references | Montagud-Martínez, D., Ferrando, V., Machado, F., Monsoriu, J. A. & Furlan, W. D. Imaging performance of a diffractive corneal inlay for presbyopia in a model eye. IEEE Access 7, 163933 (2019). | es_ES |
dc.description.references | Montagud-Martínez, D., Ferrando, V., Monsoriu, J. A. & Furlan, W. D. Optical evaluation of new designs of multifocal diffractive corneal inlays. J. Ophthalmol. 2019, 9382467 (2019). | es_ES |
dc.description.references | Montagud-Martínez, D., Ferrando, V., Monsoriu, J. A. & Furlan, W. D. Proposal of a new diffractive corneal inlay to improve near vision in a presbyopic eye. Appl. Opt. 59, d54–d58 (2020). | es_ES |
dc.description.references | Liou, H. L. & Brennan, N. A. Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A 14, 1684–1695 (1997). | es_ES |
dc.description.references | Vega, F. et al. Visual acuity of pseudophakic patients predicted from in-vitro measurements of intraocular lenses with different design. Biomed. Opt. Express 9, 4893–4906 (2018). | es_ES |
dc.description.references | Han, G. et al. Refractive corneal inlay for presbyopia in emmetropic patients in Asia: 6- month clinical outcomes. BMC Ophthalmol. 19, 66 (2019). | es_ES |
dc.description.references | Roger, F. et al. Corneal remodeling after implantation of a shape-changing inlay concurrent with myopic or hyperopic laser in situ keratomileusis. J. Cataract. Refract. Surg. 43, 1443–1449 (2017). | es_ES |
dc.description.references | Tabernero, J. & Artal, P. Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus. J. Cataract Refract. Surg. 38, 270–277 (2012). | es_ES |
dc.description.references | Monsoriu, J. A., Saavedra, G. & Furlan, W. D. Fractal zone plates with variable lacunarity. Opt. Express 12, 4227–4234 (2004). | es_ES |
dc.description.references | Monsoriu, J. A. et al. Bifocal Fibonacci diffractive lenses. IEEE Photon. J. 5, 3400106–3400106 (2013). | es_ES |
dc.description.references | Ferrando, V., Giménez, F., Furlan, W. D. & Monsoriu, J. A. Bifractal focusing and imaging properties of Thue-Morse Zone Plates. Opt. Express 23, 19846–19853 (2015). | es_ES |
dc.description.references | Bektas, C. K. & Hasirci, V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater. Sci. 8, 438–449 (2020). | es_ES |
dc.description.references | Kirz, J. Phase zone plates for x rays and the extreme uv. J. Opt. Soc. Am. 64, 301–309 (1974). | es_ES |
dc.description.references | Moshirfar, M. et al. Retrospective comparison of visual outcomes after KAMRA corneal inlay implantation with simultaneous PRK or LASIK. J. Refract. Surg. 34, 310–315 (2018). | es_ES |
dc.description.references | Manzanera, S., Prieto, P. M., Ayala, D. B., Lindacher, J. M. & Artal, P. Liquid crystal adaptive optics visual simulator: Application to testing and design of ophthalmic optical elements. Opt. Express 15, 16177–16188 (2007). | es_ES |
dc.description.references | Hervella, L., Villegas, E. A., Robles, C. & Artal, P. Spherical aberration customization to extend the depth of focus with a clinical adaptive optics visual simulator. J. Refract. Surg. 36, 223–229 (2020). | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
upv.costeAPC | 2200 | es_ES |