- -

A new trifocal corneal inlay for presbyopia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new trifocal corneal inlay for presbyopia

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Furlan, Walter D. es_ES
dc.contributor.author Montagud-Martínez, Diego es_ES
dc.contributor.author Ferrando, Vicente es_ES
dc.contributor.author Garcia-Delpech, Salvador es_ES
dc.contributor.author Monsoriu Serra, Juan Antonio es_ES
dc.date.accessioned 2022-10-05T18:03:16Z
dc.date.available 2022-10-05T18:03:16Z
dc.date.issued 2021-03-23 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187090
dc.description.abstract [EN] Corneal inlays (CIs) are the most recent surgical procedure for the treatment of presbyopia in patients who want complete independence from the use of glasses or contact lenses. Although refractive surgery in presbyopic patients is mostly performed in combination with cataract surgery, when the implantation of an intraocular lens is not necessary, the option of CIs has the advantage of being minimally invasive. Current designs of CIs are, either: small aperture devices, or refractive devices, however, both methods do not have good performance simultaneously at intermediate and near distances in eyes that are unable to accommodate. In the present study, we propose the first design of a trifocal CI, allowing good vision, at the same time, at far, intermediate and near vision in presbyopic eyes. We first demonstrate the good performance of the new inlay in comparison with a commercially available CI by using optical design software. We next confirm experimentally the image forming capabilities of our proposal employing an adaptive optics based optical simulator. This new design also has a number of parameters that can be varied to make personalized trifocal CI, opening up a new avenue for the treatment of presbyopia. es_ES
dc.description.sponsorship This work was supported by Ministerio de Ciencia e Innovacion, Spain (Grant PID2019-107391RB-I00) and by Generalitat Valenciana, Spain, (Grant PROMETEO/2019/048). D. Montagud-Martinez and V. Ferrando acknowledge the financial support from the Universitat Politecnica de Valencia, Spain (fellowships FPI-2016 and PAID-10-18, respectively) es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A new trifocal corneal inlay for presbyopia es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-021-86005-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107391RB-I00/ES/APLICACIONES BIOFOTONICAS DE LENTES DIFRACTIVAS ESCTRUCTURADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2016/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO%2F2019%2F048//Fibras Ópticas y Procesado de Señal (FOPS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-18//Programa de Ayudas de Investigación y Desarrollo/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Furlan, WD.; Montagud-Martínez, D.; Ferrando, V.; Garcia-Delpech, S.; Monsoriu Serra, JA. (2021). A new trifocal corneal inlay for presbyopia. Scientific Reports. 11(1):1-8. https://doi.org/10.1038/s41598-021-86005-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-021-86005-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33758219 es_ES
dc.identifier.pmcid PMC7987980 es_ES
dc.relation.pasarela S\431271 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Fricke, T. R. et al. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: Systematic review, meta-analysis, and modelling. Ophthalmology 125, 1492–1499 (2018). es_ES
dc.description.references Charman, W. N. Developments in the correction of presbyopia II: Surgical approaches. Ophthal. Physiol. Opt. 34, 397–426 (2014). es_ES
dc.description.references Moarefi, M. A., Bafna, S. & Wiley, W. A review of presbyopia treatment with corneal inlays. Opthamol. Ther. 6, 55–65 (2017). es_ES
dc.description.references Beer, S. M. C. et al. A 3-year follow-up study of a new corneal inlay: Clinical results and outcomes. Brit. J. Ophthalmol. 104, 723–728 (2020). es_ES
dc.description.references Limnopoulou, A. N. et al. Visual outcomes and safety of a refractive corneal inlay for presbyopia using femtosecond laser. J. Refract. Surg. 29, 12–18 (2013). es_ES
dc.description.references Garza, E. B., Gomez, S., Chayet, A. & Dishler, J. One-year safety and efficacy results of a hydrogel inlay to improve near vision in patients with emmetropic presbyopia. J. Refract. Surg. 29, 166–172 (2013). es_ES
dc.description.references Malandrini, A. et al. Bifocal refractive corneal inlay implantation to improve near vision in emmetropic presbyopic patients. J. Cataract Refract. Surg. 41, 1962–1972 (2015). es_ES
dc.description.references Waring, G. O. Correction of presbyopia with a small aperture corneal inlay. J. Refract. Surg. 27, 842–845 (2011). es_ES
dc.description.references Vilupuru, S., Lin, L. & Pepose, J. S. Comparison of contrast sensitivity and through focus in small-aperture inlay, accommodating intraocular lens, or multifocal intraocular lens subjects. Am. J. Ophthalmol. 160, 150–162 (2015). es_ES
dc.description.references Vukich, J. A. et al. Evaluation of the small-aperture intracorneal inlay: Three-year results from the cohort of the US Food and Drug Administration clinical trial. J. Cataract. Refract. Surg. 44, 541–556 (2018). es_ES
dc.description.references Beer, S. M. et al. One-year clinical outcomes of a corneal inlay for presbyopia. Cornea 36, 816–820 (2017). es_ES
dc.description.references Pinsky, P. M. Three-dimensional modeling of metabolic species transport in the cornea with a hydrogel intrastromal inlay. Invest. Ophthalmol. Vis. Sci. 55, 3093–3106 (2014). es_ES
dc.description.references Gilchrist, J. & Pardhan, S. Binocular contrast detection with unequal monocular illuminance. Ophthal. Phys. Opt. 7, 373–377 (1987). es_ES
dc.description.references Plainis, S. et al. Small aperture monovision and the Pulfrich experience: Absence of neural adaptation effects. PLoS One 8, e75987. https://doi.org/10.1371/journal.Pone.0075987 (2013). es_ES
dc.description.references Castro, J. J., Ortiz, C., Jiménez, J. R., Ortiz-Peregrina, S. & Casares-López, M. Stereopsis simulating small-aperture corneal inlay and Monovision conditions. J. Refract. Surg. 34, 482–488 (2018). es_ES
dc.description.references Furlan, W. D. et al. Diffractive corneal inlay for presbyopia. J. Biophoton. 10, 1110–1114 (2017). es_ES
dc.description.references Kipp, L. et al. Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184–188 (2001). es_ES
dc.description.references Andersen, G. Large optical photon sieve. Opt. Lett. 30, 2976–2978 (2005). es_ES
dc.description.references Menon, R., Gil, D., Barbastathis, G. & Smith, H. I. Photon-sieve lithography. J. Opt. Soc. Am. A 22, 342–345 (2005). es_ES
dc.description.references Giménez, F., Monsoriu, J. A., Furlan, W. D. & Pons, A. Fractal photon sieve. Opt. Express 14, 11958–11963 (2006). es_ES
dc.description.references Montagud-Martínez, D., Ferrando, V., Machado, F., Monsoriu, J. A. & Furlan, W. D. Imaging performance of a diffractive corneal inlay for presbyopia in a model eye. IEEE Access 7, 163933 (2019). es_ES
dc.description.references Montagud-Martínez, D., Ferrando, V., Monsoriu, J. A. & Furlan, W. D. Optical evaluation of new designs of multifocal diffractive corneal inlays. J. Ophthalmol. 2019, 9382467 (2019). es_ES
dc.description.references Montagud-Martínez, D., Ferrando, V., Monsoriu, J. A. & Furlan, W. D. Proposal of a new diffractive corneal inlay to improve near vision in a presbyopic eye. Appl. Opt. 59, d54–d58 (2020). es_ES
dc.description.references Liou, H. L. & Brennan, N. A. Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A 14, 1684–1695 (1997). es_ES
dc.description.references Vega, F. et al. Visual acuity of pseudophakic patients predicted from in-vitro measurements of intraocular lenses with different design. Biomed. Opt. Express 9, 4893–4906 (2018). es_ES
dc.description.references Han, G. et al. Refractive corneal inlay for presbyopia in emmetropic patients in Asia: 6- month clinical outcomes. BMC Ophthalmol. 19, 66 (2019). es_ES
dc.description.references Roger, F. et al. Corneal remodeling after implantation of a shape-changing inlay concurrent with myopic or hyperopic laser in situ keratomileusis. J. Cataract. Refract. Surg. 43, 1443–1449 (2017). es_ES
dc.description.references Tabernero, J. & Artal, P. Optical modeling of a corneal inlay in real eyes to increase depth of focus: Optimum centration and residual defocus. J. Cataract Refract. Surg. 38, 270–277 (2012). es_ES
dc.description.references Monsoriu, J. A., Saavedra, G. & Furlan, W. D. Fractal zone plates with variable lacunarity. Opt. Express 12, 4227–4234 (2004). es_ES
dc.description.references Monsoriu, J. A. et al. Bifocal Fibonacci diffractive lenses. IEEE Photon. J. 5, 3400106–3400106 (2013). es_ES
dc.description.references Ferrando, V., Giménez, F., Furlan, W. D. & Monsoriu, J. A. Bifractal focusing and imaging properties of Thue-Morse Zone Plates. Opt. Express 23, 19846–19853 (2015). es_ES
dc.description.references Bektas, C. K. & Hasirci, V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater. Sci. 8, 438–449 (2020). es_ES
dc.description.references Kirz, J. Phase zone plates for x rays and the extreme uv. J. Opt. Soc. Am. 64, 301–309 (1974). es_ES
dc.description.references Moshirfar, M. et al. Retrospective comparison of visual outcomes after KAMRA corneal inlay implantation with simultaneous PRK or LASIK. J. Refract. Surg. 34, 310–315 (2018). es_ES
dc.description.references Manzanera, S., Prieto, P. M., Ayala, D. B., Lindacher, J. M. & Artal, P. Liquid crystal adaptive optics visual simulator: Application to testing and design of ophthalmic optical elements. Opt. Express 15, 16177–16188 (2007). es_ES
dc.description.references Hervella, L., Villegas, E. A., Robles, C. & Artal, P. Spherical aberration customization to extend the depth of focus with a clinical adaptive optics visual simulator. J. Refract. Surg. 36, 223–229 (2020). es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
upv.costeAPC 2200 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem