- -

Grafting vigour is associated with DNA de-methylation in eggplant

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Grafting vigour is associated with DNA de-methylation in eggplant

Mostrar el registro completo del ítem

Cerruti, E.; Gisbert Domenech, MC.; Drost, H.; Valentino, D.; Portis, E.; Barchi, L.; Prohens Tomás, J.... (2021). Grafting vigour is associated with DNA de-methylation in eggplant. Horticulture Research. 8(1):1-10. https://doi.org/10.1038/s41438-021-00660-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187092

Ficheros en el ítem

Metadatos del ítem

Título: Grafting vigour is associated with DNA de-methylation in eggplant
Autor: Cerruti, Elisa Gisbert Domenech, Maria Carmen Drost, Hajk-Georg Valentino, Danila Portis, Ezio Barchi, Lorenzo Prohens Tomás, Jaime Lanteri, Sergio Comino, Cinzia Catoni, Marco
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] In horticulture, grafting is a popular technique used to combine positive traits from two different plants. This is achieved by joining the plant top part (scion) onto a rootstock which contains the stem and roots. ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Horticulture Research. (eissn: 2052-7276 )
DOI: 10.1038/s41438-021-00660-6
Editorial:
Springer Nature
Versión del editor: https://doi.org/10.1038/s41438-021-00660-6
Agradecimientos:
Part of the computations described in this paper was performed using the University of Birmingham's Compute and Storage for Life Sciences (CaStLeS) service. We are grateful to Dr. J. Paszkowski (Sainsbury Laboratory, ...[+]
Tipo: Artículo

References

Gautier, A. T. et al. Merging genotypes: graft union formation and scion–rootstock interactions. J. Exp. Bot. 70, 747–755 (2019).

Goldschmidt, E. E. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci. 5, 727 (2014).

Colla, G., Pérez-Alfocea, F. & Schwarz, D. Vegetable Grafting: Principles and Practices (CABI, 2017). [+]
Gautier, A. T. et al. Merging genotypes: graft union formation and scion–rootstock interactions. J. Exp. Bot. 70, 747–755 (2019).

Goldschmidt, E. E. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci. 5, 727 (2014).

Colla, G., Pérez-Alfocea, F. & Schwarz, D. Vegetable Grafting: Principles and Practices (CABI, 2017).

Kumar, P., Rouphael, Y., Cardarelli, M. & Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 8, 1130. (2017).

Warschefsky, E. J. et al. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 21, 418–437 (2016).

Bai, S., Kasai, A., Yamada, K., Li, T. & Harada, T. A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. J. Exp. Bot. 62, 4561–4570 (2011).

Lewsey, M. G. et al. Mobile small RNAs regulate genome-wide DNA methylation. Proc. Natl Acad. Sci. USA 113, E801–E810 (2016).

Melnyk, C. W., Molnar, A. & Baulcombe, D. C. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553–3563 (2011).

Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2010).

Thieme, C. J. et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat. Plants 1, 15025 (2015).

Zhang, H., Lang, Z. & Zhu, J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489 (2018).

Lee, J.-M. & Oda, M. in Horticultural Reviews (ed. Janic, J.) Ch. 2 (John Wiley & Sons, Ltd, 2010).

Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R. & Nuez, F. Eggplant relatives as sources of variation for developing new rootstocks: effects of grafting on eggplant yield and fruit apparent quality and composition. Sci. Hortic. 128, 14–22 (2011).

Schwarz, D., Rouphael, Y., Colla, G. & Venema, J. H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci. Hortic. 127, 162–171 (2010).

Bogoescu, M. I. R. V. & Doltu, M. Effect of grafting eggplant (Solanum melongena L.) on its selected useful characters. Bull. Univ. Agric. Sci. Vet. Med. Cluj.-Napoca Hortic. 72, 318–326 (2015).

Miceli, A., Sabatino, L., Moncada, A., Vetrano, F. & D’Anna, F. Nursery and field evaluation of eggplant grafted onto unrooted cuttings of Solanum torvum Sw. Sci. Hortic. 178, 203–210 (2014).

Wu, R. et al. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS ONE 8, e61995 (2013).

Melnyk, C. W. in Plant Hormones: Methods and Protocols (eds. Kleine-Vehn, J. & Sauer, M.) Ch. 2 (Springer, 2017).

Wang, P. et al. Factors influencing gene family size variation among related species in a plant family, Solanaceae. Genome Biol. Evol. 10, 2596–2613 (2018).

Zhong, S. et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 31, 154–159 (2013).

Moglia, A. et al. Identification of DNA methyltransferases and demethylases in Solanum melongena L., and their transcription dynamics during fruit development and after salt and drought stresses. PLoS ONE 14, e0223581 (2019).

Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).

Saeki, N. et al. Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. BMC Plant Biol. 16, 45 (2016).

Yang, M. et al. Genomic architecture of biomass heterosis in Arabidopsis. Proc. Natl Acad. Sci. USA 114, 8101–8106 (2017).

Barchi, L. et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci. Rep. 9, 1–13 (2019).

Drost, H.-G. LTRpred: _de novo_ annotation of intact retrotransposons. J. Open Source Softw. 5, 2170 (2020).

Blum, A. Heterosis, stress, and the environment: a possible road map towards the general improvement of crop yield. J. Exp. Bot. 64, 4829–4837 (2013).

Catoni, M. & Cortijo, S. in Advances in Botanical Research Vol. 88 (eds. Mirouze, M., Bucher, E. & Gallusci, P.) Ch. 4 (Academic Press 2018).

Groszmann, M. et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl Acad. Sci. USA 108, 2617–2622 (2011).

Dapp, M. et al. Heterosis and inbreeding depression of epigenetic Arabidopsis hybrids. Nat. Plants 1, 15092 (2015).

Lauss, K. et al. Parental DNA methylation states are associated with heterosis in epigenetic hybrids. Plant Physiol. 176, 1627–1645 (2018).

Greaves, I. K. et al. Trans chromosomal methylation in arabidopsis hybrids. Proc. Natl Acad. Sci. USA 109, 3570–3575 (2012).

Harris, K. D. & Zemach, A. Contiguous and stochastic CHH methylation patterns of plant DRM2 and CMT2 revealed by single-read methylome analysis. Genome Biol. 21, 194 (2020).

Du, J. et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167–180 (2012).

Saze, H., Scheid, O. M. & Paszkowski, J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat. Genet. 34, 65–69 (2003).

Kundariya, H. et al. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nat. Commun. 11, 5343 (2020).

Wang, Z. & Baulcombe, D. C. Transposon age and non-CG methylation. Nat. Commun. 11, 1–9 (2020).

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).

Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).

Ding, Q.-X., Liu, J. & Gao, L. The complete chloroplast genome of eggplant (Solanum melongena L.). Mitochondrial DNA Part B 1, 843–844 (2016).

Derrien, T. et al. Fast computation and applications of genome mappability. PLoS ONE 7, e30377 (2012).

Catoni, M. et al. DNA sequence properties that predict susceptibility to epiallelic switching. EMBO J. 36, 617–628 (2017).

Catoni, M., Tsang, J. M., Greco, A. P. & Zabet, N. R. DMRcaller: a versatile R/bioconductor package for detection and visualization of differentially methylated regions in CpG and non-CpG contexts. Nucleic Acids Res. 46, e114 (2018).

Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

Catoni, M. & Zabet, N. R. In Plant Transposable Elements: Methods and Protocols (ed. Cho, J.) 219–238 (Springer, 2021).

Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem