Mostrar el registro sencillo del ítem
dc.contributor.author | Layana-Castro, Pablo Emmanuel | es_ES |
dc.contributor.author | Puchalt-Rodríguez, Joan Carles | es_ES |
dc.contributor.author | García-Garví, Antonio | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.date.accessioned | 2022-10-06T18:06:00Z | |
dc.date.available | 2022-10-06T18:06:00Z | |
dc.date.issued | 2021-08-20 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/187206 | |
dc.description.abstract | [EN] Automatic tracking of Caenorhabditis elegans (C. egans) in standard Petri dishes is challenging due to high-resolution image requirements when fully monitoring a Petri dish, but mainly due to potential losses of individual worm identity caused by aggregation of worms, overlaps and body contact. To date, trackers only automate tests for individual worm behaviors, canceling data when body contact occurs. However, essays automating contact behaviors still require solutions to this problem. In this work, we propose a solution to this difficulty using computer vision techniques. On the one hand, a skeletonization method is applied to extract skeletons in overlap and contact situations. On the other hand, new optimization methods are proposed to solve the identity problem during these situations. Experiments were performed with 70 tracks and 3779 poses (skeletons) of C. elegans. Several cost functions with different criteria have been evaluated, and the best results gave an accuracy of 99.42% in overlapping with other worms and noise on the plate using the modified skeleton algorithm and 98.73% precision using the classical skeleton algorithm | es_ES |
dc.description.sponsorship | This study was supported by the Plan Nacional de I+D with Project RTI2018-094312-B-I00, FPI Predoctoral contract PRE2019-088214 and by European FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | C.elegans assays | es_ES |
dc.subject | Lifespan | es_ES |
dc.subject | Healthspan | es_ES |
dc.subject | Image detection | es_ES |
dc.subject | Multi-tracker | es_ES |
dc.subject | Standard Petri dishes | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Caenorhabditis elegans Multi-Tracker Based on a Modified Skeleton Algorithm | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s21165622 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Layana-Castro, PE.; Puchalt-Rodríguez, JC.; García-Garví, A.; Sánchez Salmerón, AJ. (2021). Caenorhabditis elegans Multi-Tracker Based on a Modified Skeleton Algorithm. Sensors. 21(16):1-21. https://doi.org/10.3390/s21165622 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s21165622 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 34451062 | es_ES |
dc.identifier.pmcid | PMC8402443 | es_ES |
dc.relation.pasarela | S\447825 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
upv.costeAPC | 1785,39 | es_ES |