- -

Machine learning for detecting damage in wind turbines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine learning for detecting damage in wind turbines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Villanueva López, José Felipe es_ES
dc.contributor.advisor Mayer, Angela es_ES
dc.contributor.author Trescolí Blasco, Samuel es_ES
dc.date.accessioned 2022-10-07T08:39:22Z
dc.date.available 2022-10-07T08:39:22Z
dc.date.created 2022-09-05
dc.date.issued 2022-10-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187233
dc.description.abstract [EN] During the last years the humankind realized the importance of the environment, not only that, but also the impact that our presence has on it. This impact is meanly bad, so during the last two decades we started to implement solutions to avoid or even reverse these consequences. One of most important changes was, and still is, the renewable energies, such as the wind power. Wind power production uses the speed of wind to move the helixes of a fan that moves a turbine generating electricity power. However, since these machines are mechanical instruments and they are exposed to different conditions such as weather conditions including temperature, humidity… And, mechanical stress, due to the movement and the structure of the fans themselves. They will always have damaging processes that could lead to future failures on the engines or the structures. The scope of the thesis is to detect and predict the possible failures on the wind turbines. The main goals were met, the accuracy of the models is relevant and the implications on the implementation on real life are significant since it helps to predict some of the failures. But there is still space for improvement since the analysis shows possible new paths to research. es_ES
dc.description.abstract [ES] El proyecto consiste en desarrollar algoritmos de inteligencia artificial y aplicarlos al estudio de las turbinas eólicas para detectar posibles daños presentes y futuros. es_ES
dc.format.extent 61 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ciencia de datos es_ES
dc.subject Resistencia de materiales es_ES
dc.subject Energías renovables es_ES
dc.subject Turbinas es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.subject.other Grado en Ingeniería en Tecnologías Industriales-Grau en Enginyeria en Tecnologies Industrials es_ES
dc.title Machine learning for detecting damage in wind turbines es_ES
dc.title.alternative Machine learning para detectar daños en turbinas eólicas es_ES
dc.title.alternative Machine leraning per a detectar danys en turbines eòliques es_ES
dc.type Proyecto/Trabajo fin de carrera/grado es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Trescolí Blasco, S. (2022). Machine learning for detecting damage in wind turbines. Universitat Politècnica de València. http://hdl.handle.net/10251/187233 es_ES
dc.description.accrualMethod TFGM es_ES
dc.relation.pasarela TFGM\148936 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem