Mostrar el registro sencillo del ítem
dc.contributor.author | Naseem, Rashid | es_ES |
dc.contributor.author | Shaukat, Zain | es_ES |
dc.contributor.author | Irfan, Muhammad | es_ES |
dc.contributor.author | Shah, Muhammad Arif | es_ES |
dc.contributor.author | Ahmad, Arshad | es_ES |
dc.contributor.author | Muhammad, Fazal | es_ES |
dc.contributor.author | Glowacz, Adam | es_ES |
dc.contributor.author | Dunai, Larisa | es_ES |
dc.contributor.author | Antonino Daviu, José Alfonso | es_ES |
dc.contributor.author | Sulaiman, Adel | es_ES |
dc.date.accessioned | 2022-10-07T18:06:46Z | |
dc.date.available | 2022-10-07T18:06:46Z | |
dc.date.issued | 2021 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/187282 | |
dc.description.abstract | [EN] Software risk prediction is the most sensitive and crucial activity of Software Development Life Cycle (SDLC). It may lead to success or failure of a project. The risk should be predicted earlier to make a software project successful. A Model is proposed for the prediction of software requirement risks using requirement risk dataset and machine learning techniques. Also, a comparison is done between multiple classifiers that are K-Nearest Neighbour (KNN), Average One Dependency Estimator (A1DE), Naïve Bayes (NB), Composite Hypercube on Iterated Random Projection (CHIRP), Decision Table (DT), Decision Table/ Naïve Bayes Hybrid Classifier (DTNB), Credal Decision Trees (CDT), Cost-Sensitive Decision Forest (CS-Forest), J48 Decision Tree (J48), and Random Forest (RF) to achieve best suited technique for the model according to the nature of dataset. These techniques are evaluated using various evaluation metrics including CCI (correctly Classified Instances), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE), Root Relative Squared Error (RRSE), precision, recall, F-measure, Matthew¿s Correlation Coefficient (MCC), Receiver Operating Characteristic Area (ROC area), Precision-Recall Curves area (PRC area), and accuracy. The inclusive outcome of this study shows that in terms of reducing error rates, CDT outperforms other techniques achieving 0.013 for MAE, 0.089 for RMSE, 4.498% for RAE, and 23.741% for RRSE. However, in terms of increasing accuracy, DT, DTNB and CDT achieve better results. | es_ES |
dc.description.sponsorship | This work was supported by by Generalitat Valenciana, Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital, (project AICO/019/224) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Requirements | es_ES |
dc.subject | Risk | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Classification | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics10020168 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F224//TECNICAS AVANZADAS PARA LA MONITORIZACION FIABLE DEL ESTADO DEL AISLAMIENTO EN MOTORES ELECTRICOS INDUSTRIALES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.description.bibliographicCitation | Naseem, R.; Shaukat, Z.; Irfan, M.; Shah, MA.; Ahmad, A.; Muhammad, F.; Glowacz, A.... (2021). Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction. Electronics. 10(2):1-19. https://doi.org/10.3390/electronics10020168 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics10020168 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\425371 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
upv.costeAPC | 1633,5 | es_ES |