- -

Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Naseem, Rashid es_ES
dc.contributor.author Shaukat, Zain es_ES
dc.contributor.author Irfan, Muhammad es_ES
dc.contributor.author Shah, Muhammad Arif es_ES
dc.contributor.author Ahmad, Arshad es_ES
dc.contributor.author Muhammad, Fazal es_ES
dc.contributor.author Glowacz, Adam es_ES
dc.contributor.author Dunai, Larisa es_ES
dc.contributor.author Antonino Daviu, José Alfonso es_ES
dc.contributor.author Sulaiman, Adel es_ES
dc.date.accessioned 2022-10-07T18:06:46Z
dc.date.available 2022-10-07T18:06:46Z
dc.date.issued 2021 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187282
dc.description.abstract [EN] Software risk prediction is the most sensitive and crucial activity of Software Development Life Cycle (SDLC). It may lead to success or failure of a project. The risk should be predicted earlier to make a software project successful. A Model is proposed for the prediction of software requirement risks using requirement risk dataset and machine learning techniques. Also, a comparison is done between multiple classifiers that are K-Nearest Neighbour (KNN), Average One Dependency Estimator (A1DE), Naïve Bayes (NB), Composite Hypercube on Iterated Random Projection (CHIRP), Decision Table (DT), Decision Table/ Naïve Bayes Hybrid Classifier (DTNB), Credal Decision Trees (CDT), Cost-Sensitive Decision Forest (CS-Forest), J48 Decision Tree (J48), and Random Forest (RF) to achieve best suited technique for the model according to the nature of dataset. These techniques are evaluated using various evaluation metrics including CCI (correctly Classified Instances), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE), Root Relative Squared Error (RRSE), precision, recall, F-measure, Matthew¿s Correlation Coefficient (MCC), Receiver Operating Characteristic Area (ROC area), Precision-Recall Curves area (PRC area), and accuracy. The inclusive outcome of this study shows that in terms of reducing error rates, CDT outperforms other techniques achieving 0.013 for MAE, 0.089 for RMSE, 4.498% for RAE, and 23.741% for RRSE. However, in terms of increasing accuracy, DT, DTNB and CDT achieve better results. es_ES
dc.description.sponsorship This work was supported by by Generalitat Valenciana, Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital, (project AICO/019/224) es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Requirements es_ES
dc.subject Risk es_ES
dc.subject Machine learning es_ES
dc.subject Classification es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics10020168 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2019%2F224//TECNICAS AVANZADAS PARA LA MONITORIZACION FIABLE DEL ESTADO DEL AISLAMIENTO EN MOTORES ELECTRICOS INDUSTRIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Naseem, R.; Shaukat, Z.; Irfan, M.; Shah, MA.; Ahmad, A.; Muhammad, F.; Glowacz, A.... (2021). Empirical Assessment of Machine Learning Techniques for Software Requirements Risk Prediction. Electronics. 10(2):1-19. https://doi.org/10.3390/electronics10020168 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics10020168 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\425371 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
upv.costeAPC 1633,5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem