- -

Mitochondrial D-loop sequences and haplotypes diversity in Egyptian rabbit breeds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mitochondrial D-loop sequences and haplotypes diversity in Egyptian rabbit breeds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ahmed, Sahar Saad El-Din es_ES
dc.contributor.author Ali, Neama Ibrahim es_ES
dc.contributor.author Abdelhafez, Mohamed Abdelfattah es_ES
dc.contributor.author Darwish, Hassan Ramadan es_ES
dc.contributor.author El-Keredy, Amira es_ES
dc.date.accessioned 2022-10-10T06:59:49Z
dc.date.available 2022-10-10T06:59:49Z
dc.date.issued 2022-09-30
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/187316
dc.description.abstract [EN] Rabbit breeds in Egypt are local and adapted foreign breeds that have been imported since the middle of the last century. Stressful environmental conditions including climatic changes, exposure to diseases and breeding selection have an influence on how gene flow has shaped the genetic diversity of the breeds. Mitochondrial DNA D-loop is a genetic marker used to trace the geographic distribution of genetic variation for the investigation of expansions, migrations and other gene flow patterns. The study aimed to determine the genetic diversity of the mitochondrial DNA D-loop (mtDNA D-loop) in Black Baladi, Red Baladi, Gabali, APRI line and New Zealand breeds to gather the scientific data required to create a proper conservation and sustainable management plan. Blood samples were taken from animals unrelated to each other. A 332-bp of mtDNA D-loop was successfully amplified and alignment sequences were deposited in the GenBank database. The results detected six haplotypes in the five breeds. Haplotype diversity within individual breeds varied from 0 (Red Baladi) to 0.551±0.114 (Gabali). The nucleotide diversity (π) value was relatively low (0.001-0.006), with greater values in APRI and New Zealand. Pairwise distances between breeds yielded varying values ranging from 0 to 0.254, and the values between the Red Baladi and other breeds were comparatively high, with pairwise distances from 0.172 to 0.254. The phylogenetic analysis involved 74 nucleotide sequences of the Egyptian rabbit and thirty-one sequences retrieved from GenBank of the reference samples of different haplogroups. The results of the phylogenetic analysis correlated to the reference mtDNA GenBank database showed that the five Egyptian rabbit breeds were grouped into haplotypes A, B and K. The results of the genetic diversity using mtDNA shed light on the importance of the local breed s genetic diversity information and revealed unique mtDNA haplotypes, which is an important finding for breeding strategies designed to conserve genetic variants and provide sustainable management. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Rabbit breeds es_ES
dc.subject Mitochondrial DNA es_ES
dc.subject Genetic diversity es_ES
dc.subject Haplogroup es_ES
dc.title Mitochondrial D-loop sequences and haplotypes diversity in Egyptian rabbit breeds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2022.17235
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ahmed, SSE.; Ali, NI.; Abdelhafez, MA.; Darwish, HR.; El-Keredy, A. (2022). Mitochondrial D-loop sequences and haplotypes diversity in Egyptian rabbit breeds. World Rabbit Science. 30(3):201-207. https://doi.org/10.4995/wrs.2022.17235 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2022.17235 es_ES
dc.description.upvformatpinicio 201 es_ES
dc.description.upvformatpfin 207 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\17235 es_ES
dc.description.references Abou Khadiga G., Youssef Y.M.K., Saleh K., Nofal R.Y., Baselga M. 2010. Genetic trend in selection for litter weight in two maternal lines of rabbits in Egypt. World Rabbit Sci., 18: 27-32. https://doi.org/10.4995/WRS.2010.18.04 es_ES
dc.description.references Ahmed S., Grobler P., Madisha T., Kotzé A. 2017. Mitochondrial D-loop sequences reveal a mixture of endemism and immigration in Egyptian goat populations. Mitochondrial DNA J. Part A, 28: 711-716. https://doi.org/10.3109/24701394.2016.1174225 es_ES
dc.description.references Caird R., Jeffrey V., Kumar M., James R., Derek B., Harvey B., Mark B., Hans C., Archie C., Noelle C., Catherine E., Janet E., John L., Joan L., Holly N., Catherine P., Timothy P.L., Tad S., Jerry T., Bhanu T., Van E.,. Van T., Kevin W. 2019. Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint for Animal Genome Research 2018–2027. Fron. in Gene., 10: 327. https://doi.org/10.3389/fgene.2019.00327 es_ES
dc.description.references El-Raffa A.M. 2007. Formation of a rabbit synthetic line (Alexandria line) and primary analysis of its productive and reproductive performance. Egypt. Poult. Sci., 27: 321-334. es_ES
dc.description.references El-Sabrout K., Aggag S., El-Raffa A. 2017. Comparison of milk production and milk composition for an exotic and a local synthetic rabbit lines. Vet. World, 10: 526-529. https://doi.org/10.14202/vetworld.2017.526-529 es_ES
dc.description.references Emam A.M., Afonso S., Azoz A.A.A., González-Redondo P., Mehaisen G.M.K., Ahmed N.A., Ferrand N. 2016. Microsatellite polymorphism in some Egyptian and Spanish common rabbit breeds. In Proc.: 11th World Rabbit Congress, 15-18 June, Qingdao, China. es_ES
dc.description.references Emam A.M., Afonso S., González-Redondo P., Mehaisen G.M.K., Azoz A.A.A., Ahmed N.A., Fernand N. 2020. Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis. World Rabbit Sci., 28: 93-102. es_ES
dc.description.references https://doi.org/10.4995/wrs.2020.12219 es_ES
dc.description.references Excoffier L., Lischer H.E. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x es_ES
dc.description.references FAOSTAT. 2010. FAO Statics Division. es_ES
dc.description.references FAOSTAT. 2013. Statistical Yearbook. World Food and Agriculture Organisation, Rome. es_ES
dc.description.references Galal E.S.E., Khalil M.H. 1994. Development of rabbit industry in Egypt. Cahiers Options Mediterraneennes (CIHEAM), 8: 43-56 es_ES
dc.description.references Galal S., 2007. Farm animal genetic resources in Egypt: factsheet. Egyptian J. Anim. Prod., 44: 1-23. https://doi.org/10.21608/ejap.2007.93148 es_ES
dc.description.references John S.W., Weitzner G., Rozen R., Scriver C.R. 1991. A rapid procedure for extracting genomic DNA from leukocytes. Nucleic Acids Res., 19: 408. https://doi.org/10.1093/nar/19.2.408 es_ES
dc.description.references Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinforma. 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199 es_ES
dc.description.references Khader A.F., Abou-Steit T., Tharwat E.E. 2000. Characterization of the monthly reproductive performance of Sinai Gabali rabbit es_ES
dc.description.references does using New Zealand white rabbit as a reference breed. J. Agric. Sci. Mansoura Univ., 25: 4925-4932. es_ES
dc.description.references Khalil M.H. 1997. Model for the description of rabbit genetic resources in Mediterranean countries: Application to the Egyptian breeds Giza White and Baladi. https://agris.fao.org es_ES
dc.description.references Khalil M.H. 1999. Rabbit genetic resources of Egypt. Anim. Gen. Res., 26: 95-111. es_ES
dc.description.references Khalil M.H., Baselga M. 2002. Rabbit genetic resources in Mediterranean countries. Options Méditerranéennes. Série B: Etudes et Recherches (CIHEAM). es_ES
dc.description.references Long J.R, Qiu X.P., Zeng F.T., Tang L.M., Zhang Y.P. 2003. Origin of rabbit (Oryctolagus cuniculus) in China: evidence from mitochondrial DNA control region sequence analysis. Anim. Gene., 34: 82-87. https://doi.org/10.1046/j.1365-2052.2003.00945.x es_ES
dc.description.references Ministry of Agriculture and Land Reclamation in Egypt, FAO. 2003. First Report on the state of animal Genetic Resources in the Arab Republic of Egypt. FAO, Rome. es_ES
dc.description.references Nguyen N.T., Brajkovic V., Cubric-Curik V., Ristov S., Veir Z., Szendrő Z., Nagy I., Curik I. 2018. Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits. World Rabbit Sci., 26: 287-298. https://doi.org/10.4995/wrs.2018.7644 es_ES
dc.description.references Owuor M.A., Mulwa R., Otieno P., Icely J., Newton A. 2019. Valuing mangrove biodiversity and ecosystem services: A deliberative es_ES
dc.description.references choice experiment in Mida Creek, Kenya. Ecosyst. Serv., 40: 101040. https://doi.org/10.1016/j.ecoser.2019.101040 es_ES
dc.description.references Pierpaoli M., Riga F., Trocchi V., Randi E. 1999. Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol. Ecol., 8: 1805-1817. https://doi.org/10.1046/j.1365-294x.1999.00766.x es_ES
dc.description.references Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol., 34: 3299-3302. https://doi.org/10.1093/molbev/msx248 es_ES
dc.description.references Slaska B., Makarevic A., Surdyka M., Nisztuk S., 2014. Application aspects of animal and human mitochondrial genomics. Acta Sci. Pol., Zootechnica, 13: 3-18. es_ES
dc.description.references Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10: 512-526. es_ES
dc.description.references Tamura K., Tao Q., Kumar S. 2018. Theoretical foundation of the RelTime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol., 35: 1770-1782. https://doi.org/10.1093/molbev/msy044 es_ES
dc.description.references Youssef Y.K., Iraqi M.M., El-Raffa A.M., Afifi E.A., Khalil M.H., García M.L., Baselga M. 2008. A joint project to synthesize new lines of rabbits in Egypt and Saudi Arabia: emphasis for results and prospects. In Proc. 9th World Rabbit Congress 1637-1642. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem