- -

Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit

Show simple item record

Files in this item

dc.contributor.author Zhao, Bohao es_ES
dc.contributor.author Li, Jiali es_ES
dc.contributor.author Zhang, Xiyu es_ES
dc.contributor.author Bao, Zhiyuan es_ES
dc.contributor.author Chen, Yang es_ES
dc.contributor.author Wu, Xinsheng es_ES
dc.date.accessioned 2022-10-10T07:12:05Z
dc.date.available 2022-10-10T07:12:05Z
dc.date.issued 2022-09-30
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/187317
dc.description.abstract [EN] Growth and development of hair follicles (HF) is a complex and dynamic process in most mammals. As HF growth and development regulate rabbit wool yield, exploring the role of genes involved in HF growth and development may be relevant. In this study, the coding sequence of the Angora rabbit (Oryctolagus cuniculus) WIF1 gene was cloned. The length of the coding region sequence was found to be 1140 bp, which encodes 379 amino acids. Bioinformatics analysis indicated that the WIF1 protein was unstable, hydrophilic and located in the extracellular region, contained a putative signal peptide and exhibited a high homology in different mammals. Moreover, WIF1 was significantly downregulated in the high wool production in the Angora rabbit group. Overexpression and knockdown studies revealed that WIF1 regulates HF growth and development-related genes and proteins, such as LEF1 and CCND1. WIF1 activated β-catenin/TCF transcriptional activity, promoted cell apoptosis and inhibited cellular proliferation. These results indicate that WIF1 might be important for HF development. This study, therefore, provides a theoretical foundation for investigating WIF1 in HF growth and development. es_ES
dc.description.sponsorship This research was funded by This research was funded by National Natural Science Foundation of China (Grant No. 32102529), China Agriculture Research System of MOF and MARA (CARS-43-A-1). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Rabbit es_ES
dc.subject WIF1 es_ES
dc.subject Angora rabbit es_ES
dc.subject Hair follicle es_ES
dc.subject Bioinformatics es_ES
dc.subject Wnt signalling pathway es_ES
dc.title Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2022.17353
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//32102529 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Zhao, B.; Li, J.; Zhang, X.; Bao, Z.; Chen, Y.; Wu, X. (2022). Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit. World Rabbit Science. 30(3):209-218. https://doi.org/10.4995/wrs.2022.17353 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2022.17353 es_ES
dc.description.upvformatpinicio 209 es_ES
dc.description.upvformatpfin 218 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\17353 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.description.references Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Dev. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3 es_ES
dc.description.references Bai L., Sun H., Jiang W., Yang L., Liu G., Zhao X., Hu H., Wang J., Gao S. 2021. DNA methylation and histone acetylation are involved in Wnt10b expression during the secondary hair follicle cycle in Angora rabbits. J. Anim. Phys. Anim. Nutr., 105: 599-609. https://doi.org/10.1111/jpn.13481 es_ES
dc.description.references Blom N., Gammeltoft S., Brunak S. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol., 294: 1351-1362. https://doi.org/10.1006/jmbi.1999.3310 es_ES
dc.description.references Botchkarev V.A., Sharov A.A. 2010. BMP signaling in the control of skin development and hair follicle growth. Differentiation, 72: 512-526. https://doi.org/10.1111/j.1432-0436.2004.07209005.x es_ES
dc.description.references Chen Y., Fan Z., Wang X., Mo M., Zeng S.B., Xu R.H., Wang X., Wu Y. 2020. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res. Ther., 11: 144. https://doi.org/10.1186/s13287-020-01650-6 es_ES
dc.description.references DasGupta R., Fuchs E. 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 126: 4557-4568. https://doi.org/10.1242/dev.126.20.4557 es_ES
dc.description.references Deléage G. 2017. ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments. Bioinformatics, 33: 3991-3992. https://doi.org/10.1093/bioinformatics/btx521 es_ES
dc.description.references Gasteiger E., Hoogland C., Gattiker A., Wilkins M.R., Appel R.D., Bairoch A. 2005. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer: pp. 571-607. https://doi.org/10.1385/1-59259-890-0:571 es_ES
dc.description.references Gledhill K., Gardner A., Jahoda C.A. 2013. Isolation and establishment of hair follicle dermal papilla cell cultures, Skin Stem Cells. Springer: pp. 285-292. https://doi.org/10.1007/978-1-62703-330-5_22 es_ES
dc.description.references Gupta R., Jung E., Brunak S. 2004. Prediction of N-glycosylation sites in human proteins. ResearchGate, 46: 203-206. Hardy M.H. 1992. The secret life of the hair follicle. Trends Genet., 8: 55-61. https://doi.org/10.1016/0168-9525(92)90044-5 es_ES
dc.description.references Horton P., Park K.J., Obayashi T., Fujita N., Harada H., Adams-Collier C., Nakai K. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Res., 35: W585-W587. https://doi.org/10.1093/nar/gkm259 es_ES
dc.description.references Hu Y.A., Zhao C.J. 2010. Research progress of Wif1 in development of nervous system. J. Zhejiang Univ. Med. Sci., 39: 93-96. es_ES
dc.description.references Huang Y., Du Q., Wu W., She F., Chen Y. 2016. Rescued expression of WIF-1 in gallbladder cancer inhibits tumor growth and induces tumor cell apoptosis with altered expression of proteins. Mol. Med. Rep., 14: 2573-2581. https://doi.org/10.3892/mmr.2016.5532 es_ES
dc.description.references Hunter T., Karin M. 1992. The regulation of transcription by phosphorylation. Cell, 70: 375-387. https://doi.org/10.1016/0092-8674(92)90162-6 es_ES
dc.description.references Julenius K., Mølgaard A., Gupta R., Brunak S. 2005. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153-164. https://doi.org/10.1093/glycob/cwh151 es_ES
dc.description.references Kim B.K., Yoon S.K. 2014. Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation. Annals Dermatol., 26: 79-87. https://doi.org/10.5021/ad.2014.26.1.79 es_ES
dc.description.references Kiyozumi D., Osada A., Sugimoto N., Weber C.N., Ono Y., Imai T., Okada A., Sekiguchi K. 2011. Identification of genes expressed during hair follicle induction. J. Dermatol., 38: 674-679. https://doi.org/10.1111/j.1346-8138.2010.01050.x es_ES
dc.description.references Kratochwil K., Dull M., Farinas I., Galceran J., Grosschedl R. 1996. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev., 10: 1382-1394. https://doi.org/10.1101/gad.10.11.1382 es_ES
dc.description.references Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096 es_ES
dc.description.references Lin C., Liu Y., Huang K., Chen X., Cai B., Li H., Yuan Y., Zhang H., Li Y. 2014. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem. Biophys. Res. Commun., 453: 508-514. https://doi.org/10.1016/j.bbrc.2014.09.119 es_ES
dc.description.references Liu Y.L., Yang H.P., Zhou X.D., Gong L., Tang C.L., Wang H.J., 2011. The hypomethylation agent bisdemethoxycurcumin acts on the WIF-1 promoter, inhibits the canonical Wnt pathway and induces apoptosis in human non-small-cell lung cancer. Curr. Cancer Drug Targets, 11: 1098-1110. https://doi.org/10.2174/156800911798073041 es_ES
dc.description.references Lu D., Dong W., Zhang X., Quan X., Bao D., Lu Y., Zhang L. 2013. WIF1 causes dysfunction of heart in transgenic mice. Transgenic Res., 22: 1179-1189. https://doi.org/10.1007/s11248-013-9738-z es_ES
dc.description.references Mashhadikhan M., Kheiri H., Dehghanifard A. 2020. DNA methylation and gene expression of sFRP2, sFRP4, Dkk 1, and Wif1 during osteoblastic differentiation of bone marrow derived mesenchymal stem cells. J. Oral Biosci., 62: 349-356. https://doi.org/10.1016/j.job.2020.08.001 es_ES
dc.description.references Millar S.E., Willert K., Salinas P.C., Roelink H., Nusse R., Sussman D.J., Barsh G.S. 1999. WNT signaling in the control of hair growth and structure. Develop. Biol., 207: 133-149. https://doi.org/10.1006/dbio.1998.9140 es_ES
dc.description.references Möller S., Croning M.D., Apweiler R. 2001. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17: 646-653. https://doi.org/10.1093/bioinformatics/17.7.646 es_ES
dc.description.references Ng R.C., Matsumaru D., Ho A.S., Garcia-Barceló M.M., Yuan Z.W., Smith D., Kodjabachian L., Tam P.K., Yamada G., Lui V.C. 2014. Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations. Cell Death Differ., 21: 978-989. https://doi.org/10.1038/cdd.2014.20 es_ES
dc.description.references Ohtsubo K., Marth J.D. 2006. Glycosylation in cellular mechanisms of health and disease. Cell, 126: 855-867. https://doi.org/10.1016/j.cell.2006.08.019 es_ES
dc.description.references Oznurlu Y., Celik I., Sur E., Telatar T., Ozparlak H. 2009. Comparative skin histology of the white New Zealand and Angora rabbits. J. Anim. Vet. Adv., 8: 1694-1701. es_ES
dc.description.references Petersen T.N., Brunak S., Von Heijne G., Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8: 785. https://doi.org/10.1038/nmeth.1701 es_ES
dc.description.references Powis G., Kooistra K. 1987. Doxorubicin-induced hair loss in the Angora rabbit: a study of treatments to protect against the hair loss. Cancer Chemother. Pharmacol., 20: 291-296. https://doi.org/10.1007/BF00262579 es_ES
dc.description.references Ramachandran I., Thavathiru E., Ramalingam S., Natarajan G., Mills W.K., Benbrook D.M., Zuna R., Lightfoot S., Reis A., Anant S., Queimado L. 2012. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 31: 2725-2737. https://doi.org/10.1038/onc.2011.455 es_ES
dc.description.references Rendl M., Lewis L., Fuchs E. 2005. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol., 3: e331. https://doi.org/10.1371/journal.pbio.0030331 es_ES
dc.description.references Schmittgen T.D., Livak K.J. 2008. Analyzing real-time PCR data by the comparative C T method. Nat. Protoc., 3: 1101. https://doi.org/10.1038/nprot.2008.73 es_ES
dc.description.references Schneider M.R., Schmidt-Ullrich R., Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol., 19: R132-R142. https://doi.org/10.1016/j.cub.2008.12.005 es_ES
dc.description.references Stenn K.S., Paus R. 2001. Controls of Hair Follicle Cycling. Physiol. Rev., 81: 449. https://doi.org/10.1152/physrev.2001.81.1.449 es_ES
dc.description.references Ubersax J.A., Ferrell Jr J.E. 2007. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol., 8: 530-541. https://doi.org/10.1038/nrm2203 es_ES
dc.description.references Wang L.C., Liu Z.Y., Shapiro R., Yang J., Sizing I., Rayhorn P., Garber E.A., Benjamin C.D., Williams K.P., Taylor F.R. 2000. Conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J. Investig. Dermatol., 114: 901-908. https://doi.org/10.1046/j.1523-1747.2000.00951.x es_ES
dc.description.references Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 46: W296-W303. https://doi.org/10.1093/nar/gky427 es_ES
dc.description.references Wissmann C., Wild P.J., Kaiser S., Roepcke S., Stoehr R., Woenckhaus M., Kristiansen G., Hsieh J.C., Hofstaedter F., Hartmann A., Knuechel R., Rosenthal A., Pilarsky C. 2003. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J. Pathol., 201: 204-212. https://doi.org/10.1002/path.1449 es_ES
dc.description.references Xu X., Lyle S., Liu Y., Solky B., Cotsarelis G. 2003. Differential Expression of Cyclin D1 in the Human Hair Follicle. Am. J. Pathol., 163: 969-978. https://doi.org/10.1016/S0002-9440(10)63456-6 es_ES
dc.description.references Zhao B., Chen Y., Hu S., Yang N., Wang M., Liu M., Li J., Xiao Y., Wu X. 2019a. Systematic Analysis of Non-coding RNAs Involved in the Angora Rabbit (Oryctolagus cuniculus) Hair Follicle Cycle by RNA Sequencing. Front. Genet., 10: 407. https://doi.org/10.3389/fgene.2019.00407 es_ES
dc.description.references Zhao B., Chen Y., Yang N., Chen Q., Bao Z., Liu M., Hu S., Li J., Wu X. 2019b. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2. J. Cell. Physiol., 234: 20329-20341. https://doi.org/10.1002/jcp.28633 es_ES
dc.description.references Zhao B., Li J., Chen Q., Yang N., Bao Z., Hu S., Chen Y., Wu X. 2021. A Treatment Combination of IGF and EGF Promotes Hair Growth in the Angora Rabbit. Genes, 12: 24. https://doi.org/10.3390/genes12010024 es_ES
dc.description.references Zhou P., Byrne C., Jacobs J., Fuchs E. 1995. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev., 9: 700-713. https://doi.org/10.1101/gad.9.6.700 es_ES


This item appears in the following Collection(s)

Show simple item record