Mostrar el registro sencillo del ítem
dc.contributor.author | García-Garví, Antonio | es_ES |
dc.contributor.author | Puchalt-Rodríguez, Joan Carles | es_ES |
dc.contributor.author | Layana-Castro, Pablo Emmanuel | es_ES |
dc.contributor.author | Navarro Moya, Francisco | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.date.accessioned | 2022-10-10T18:08:08Z | |
dc.date.available | 2022-10-10T18:08:08Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/187404 | |
dc.description.abstract | [EN] The automation of lifespan assays with C. elegans in standard Petri dishes is a challenging problem because there are several problems hindering detection such as occlusions at the plate edges, dirt accumulation, and worm aggregations. Moreover, determining whether a worm is alive or dead can be complex as they barely move during the last few days of their lives. This paper proposes a method combining traditional computer vision techniques with a live/dead C. elegans classifier based on convolutional and recurrent neural networks from low-resolution image sequences. In addition to proposing a new method to automate lifespan, the use of data augmentation techniques is proposed to train the network in the absence of large numbers of samples. The proposed method achieved small error rates (3.54% +/- 1.30% per plate) with respect to the manual curve, demonstrating its feasibility. | es_ES |
dc.description.sponsorship | This study was supported by the Plan Nacional de I + D under the project RTI2018-094312B-I00 and by the European FEDER funds. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | C. elegans | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Lifespan automation | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Towards Lifespan Automation for Caenorhabditis elegans Based on Deep Learning: Analysing Convolutional and Recurrent Neural Networks for Dead or Live Classification | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s21144943 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RTI2018-094312-B-I00-AR//MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | García-Garví, A.; Puchalt-Rodríguez, JC.; Layana-Castro, PE.; Navarro Moya, F.; Sánchez Salmerón, AJ. (2021). Towards Lifespan Automation for Caenorhabditis elegans Based on Deep Learning: Analysing Convolutional and Recurrent Neural Networks for Dead or Live Classification. Sensors. 21(14):1-17. https://doi.org/10.3390/s21144943 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s21144943 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 14 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 34300683 | es_ES |
dc.identifier.pmcid | PMC8309694 | es_ES |
dc.relation.pasarela | S\443493 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
upv.costeAPC | 1172,23 | es_ES |