- -

A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rghioui, Amine es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Oumnad, Abdelmajid es_ES
dc.date.accessioned 2022-10-11T18:04:55Z
dc.date.available 2022-10-11T18:04:55Z
dc.date.issued 2020-09-19 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187520
dc.description.abstract [EN] Continuous monitoring of diabetic patients improves their quality of life. The use of multiple technologies such as the Internet of Things (IoT), embedded systems, communication technologies, artificial intelligence, and smart devices can reduce the economic costs of the healthcare system. Different communication technologies have made it possible to provide personalized and remote health services. In order to respond to the needs of future intelligent e-health applications, we are called to develop intelligent healthcare systems and expand the number of applications connected to the network. Therefore, the 5G network should support intelligent healthcare applications, to meet some important requirements such as high bandwidth and high energy efficiency. This article presents an intelligent architecture for monitoring diabetic patients by using machine learning algorithms. The architecture elements included smart devices, sensors, and smartphones to collect measurements from the body. The intelligent system collected the data received from the patient, and performed data classification using machine learning in order to make a diagnosis. The proposed prediction system was evaluated by several machine learning algorithms, and the simulation results demonstrated that the sequential minimal optimization (SMO) algorithm gives superior classification accuracy, sensitivity, and precision compared to other algorithms. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Healthcare es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Internet of Things es_ES
dc.subject Diabetic patient monitoring es_ES
dc.subject Machine learning es_ES
dc.subject Data classification es_ES
dc.subject Healthcare es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/healthcare8030348 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Rghioui, A.; Lloret, J.; Sendra, S.; Oumnad, A. (2020). A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms. Healthcare. 8(3):1-16. https://doi.org/10.3390/healthcare8030348 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/healthcare8030348 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2227-9032 es_ES
dc.identifier.pmid 32961757 es_ES
dc.identifier.pmcid PMC7551629 es_ES
dc.relation.pasarela S\472805 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem