- -

A Note on the Spectrum of Some Composition Operators on Korenblum Type Spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A Note on the Spectrum of Some Composition Operators on Korenblum Type Spaces

Show full item record

Galindo, P.; Gomez-Orts, E. (2021). A Note on the Spectrum of Some Composition Operators on Korenblum Type Spaces. Results in Mathematics. 76(2):1-12. https://doi.org/10.1007/s00025-021-01407-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/187526

Files in this item

Item Metadata

Title: A Note on the Spectrum of Some Composition Operators on Korenblum Type Spaces
Author: Galindo, Pablo Gomez-Orts, Esther
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We prove that under some mild conditions on the symbol phi, the spectrum of the corresponding composition operator C-phi on the Korenblum type spaces A_(-alpha) and A(+)(-alpha) contains a closed ball of positive radius.[+]
Subjects: Composition operator , Spectrum , Analytic functions , Growth Banach spaces , Korenblum space , Fréchet spaces , (LB)-spaces
Copyrigths: Reserva de todos los derechos
Source:
Results in Mathematics. (issn: 1422-6383 )
DOI: 10.1007/s00025-021-01407-4
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s00025-021-01407-4
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094431-B-I00/ES/ESPACIOS DE FUNCIONES: FUNCIONES ANALITICAS Y OPERADORES DE COMPOSICION. RENORMAMIENTOS Y TOPOLOGIA DESCRIPTIVA/
info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//MTM2016-76647-P//ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
info:eu-repo/grantAgreement/AEI//BES-2017-081200//AYUDAS PARA CONTRATOS PREDOCTORALES PARA LA FORMACION DE DOCTORES-GOMEZ ORTS. PROYECTO: ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/
Thanks:
Pablo Galindo: partially supported by Spanish MINECO/FEDER PGC2018-094431-B-I00. Esther Gomez-Orts: partially supported by MTM2016-76647-P and the grant BES-2017-081200.
Type: Artículo

References

Arendt, W., Célaries, B., Chalendar, I.: In Koenig’s footsteps: diagonalization of composition operators. J. Funct. Anal. 278(2), Article ID: 108313 (2020)

Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Isr. J. Math. 141, 263–276 (2004)

Bierstedt, K..D.., Summers, W.. H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70–79 (1993) [+]
Arendt, W., Célaries, B., Chalendar, I.: In Koenig’s footsteps: diagonalization of composition operators. J. Funct. Anal. 278(2), Article ID: 108313 (2020)

Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Isr. J. Math. 141, 263–276 (2004)

Bierstedt, K..D.., Summers, W.. H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70–79 (1993)

Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 64(1), 101–118 (1998)

Bonet, J., Galindo, P., Lindström, M.: Spectra and essential spectral radii of composition operators on weighted Banach spaces of analytic functions. J. Math. Anal. Appl. 340, 884–891 (2008)

Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)

Gómez-Orts, E.: Weighted composition operators on Korenblum type spaces of analytic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(4), 1–15 (2020)

Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer-Verlag, New York (2000)

Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)

Kamowitz, H.: The spectra of composition operators on $$H^p$$. J. Funct. Anal. 18, 132–150 (1975)

Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)

Köthe, G.: Topological Vector Spaces II. Springer-Verlag, New York Inc (1979)

Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, vol. 2. Oxford University Press, New York (1997)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record