Arendt, W., Célaries, B., Chalendar, I.: In Koenig’s footsteps: diagonalization of composition operators. J. Funct. Anal. 278(2), Article ID: 108313 (2020)
Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Isr. J. Math. 141, 263–276 (2004)
Bierstedt, K..D.., Summers, W.. H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70–79 (1993)
[+]
Arendt, W., Célaries, B., Chalendar, I.: In Koenig’s footsteps: diagonalization of composition operators. J. Funct. Anal. 278(2), Article ID: 108313 (2020)
Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of analytic functions. Isr. J. Math. 141, 263–276 (2004)
Bierstedt, K..D.., Summers, W.. H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 54(1), 70–79 (1993)
Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. Ser. A 64(1), 101–118 (1998)
Bonet, J., Galindo, P., Lindström, M.: Spectra and essential spectral radii of composition operators on weighted Banach spaces of analytic functions. J. Math. Anal. Appl. 340, 884–891 (2008)
Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)
Gómez-Orts, E.: Weighted composition operators on Korenblum type spaces of analytic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(4), 1–15 (2020)
Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer-Verlag, New York (2000)
Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)
Kamowitz, H.: The spectra of composition operators on $$H^p$$. J. Funct. Anal. 18, 132–150 (1975)
Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)
Köthe, G.: Topological Vector Spaces II. Springer-Verlag, New York Inc (1979)
Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, vol. 2. Oxford University Press, New York (1997)
[-]