Mostrar el registro sencillo del ítem
dc.contributor.author | Defant, Andreas | es_ES |
dc.contributor.author | Fernández Vidal, Tomás | es_ES |
dc.contributor.author | Schoolmann, Ingo | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2022-10-13T18:07:01Z | |
dc.date.available | 2022-10-13T18:07:01Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/187680 | |
dc.description.abstract | [EN] Inspired by a recent article on Frechet spaces of ordinary Dirichlet series Sigma a(n)n(-s) due to J. Bonet, we study topological and geometrical properties of certain scales of Frechet spaces of general Dirichlet spaces Sigma a(n)e(-lambda ns) focus on the Frechet space of lambda-Dirichlet series Sigma a(n)e(-lambda ns) which have limit functions bounded on all half planes strictly smaller than the right half plane [Re > 0]. We develop an abstract setting of pre-Frechet spaces of lambda-Dirichlet series generated by certain admissible normed spaces of lambda-Dirichlet series and the abscissas of convergence they generate, which allows also to define Frechet spaces of lambda-Dirichlet series for which a(n)e(-lambda n/k) for each k equals the Fourier coefficients of a function on an appropriate lambda-Dirichlet group. | es_ES |
dc.description.sponsorship | Andreas Defant: Partially supported by MINECO and FEDER project MTM2017-83262-C2-1-P. Tomás Fernández Vidal: Supported by PICT 2015-2299. Pablo Sevilla-Peris:Supported by MINECO and FEDER project MTM2017-83262-C2-1-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | General Dirichlet series | es_ES |
dc.subject | Abscissas of convergence | es_ES |
dc.subject | Frechet spaces | es_ES |
dc.subject | Hardy spaces | es_ES |
dc.subject | Almost periodic functions | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Frechet spaces of general Dirichlet series | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-021-01074-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT 2015-2299/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Defant, A.; Fernández Vidal, T.; Schoolmann, I.; Sevilla Peris, P. (2021). Frechet spaces of general Dirichlet series. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 115(3):1-34. https://doi.org/10.1007/s13398-021-01074-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s13398-021-01074-8 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 34 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\460986 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.description.references | Amerio, L., Prouse, G.: Almost-Periodic Functions and Functional Equations. Van Nostrand Reinhold Co., New York (1971) | es_ES |
dc.description.references | Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002) | es_ES |
dc.description.references | Bayart, F.: Convergence and almost sure properties in Hardy spaces of Dirichlet series. arXiv:2101.02990 (arXiv preprint) (2021) | es_ES |
dc.description.references | Besicovitch, A.S.: Almost Periodic Functions. Dover Publications Inc, New York (1955) | es_ES |
dc.description.references | Bohr, H.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913) | es_ES |
dc.description.references | Bohr, H.: Einige Bemerkungen über das Konvergenzproblem Dirichletscher Reihen. Rend. Circ. Mat. Palermo 37, 1–16 (1914) | es_ES |
dc.description.references | Bonet, J.: The Fréchet Schwartz algebra of uniformly convergent Dirichlet series. Proc. Edinb. Math. Soc. 61(4), 933–942 (2018) | es_ES |
dc.description.references | Carando, D., Defant, A., Marceca, F., Schoolmann, I.: Vector-valued general Dirichlet series. Stud. Math 258, 269–316 (2021) | es_ES |
dc.description.references | Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Functions in High Dimensions. New Mathematical Monographs, vol. 37. Cambridge University Press, Cambridge (2019) | es_ES |
dc.description.references | Defant, A., Pérez, A., Sevilla-Peris, P.: A note on abscissas of Dirichlet series. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113(3), 2639–2653 (2019) | es_ES |
dc.description.references | Defant, A., Schoolmann, I.: Hardy spaces of general Dirichlet series—a survey. In: Function Spaces XII. Selected Papers Based on the Presentations at the 12th Conference, Krakow, Poland, July 9–14, 2018, pp 123–149. Warsaw: Polish Academy of Sciences, Institute of Mathematics (2019) | es_ES |
dc.description.references | Defant, A., Schoolmann, I.: $$\cal{H}_p$$-theory of general Dirichlet series. J. Fourier Anal. Appl. 25(6), 3220–3258 (2019) | es_ES |
dc.description.references | Defant, A., Schoolmann, I.: Riesz means in Hardy spaces on Dirichlet groups. Math. Ann. 378(1–2), 57–96 (2020) | es_ES |
dc.description.references | Defant, A., Schoolmann, I.: Variants of a theorem of Helson on general Dirichlet series. J. Funct. Anal. 279(5), 108569, 37 (2020) | es_ES |
dc.description.references | Fernández Vidal, T., Galicer, D., Mereb, M., Sevilla-Peris, P.: Hardy space of translated Dirichlet series. Math. Z. 20, 20 (2021) | es_ES |
dc.description.references | Floret, K., Wloka, J.: Einführung in die Theorie der lokalkonvexen Räume. Lecture Notes in Mathematics, vol. 56. Springer, Berlin (1968) | es_ES |
dc.description.references | Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 18. Stechert-Hafner Inc., New York (1964) | es_ES |
dc.description.references | Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$. Duke Math. J. 86(1), 1–37 (1997) | es_ES |
dc.description.references | Jarchow, H.: Locally Convex Spaces. B. G. Teubner, Stuttgart (1981). Mathematische Leitfäden. [Mathematical Textbooks] | es_ES |
dc.description.references | Landau, E.: Über die gleichmäßige Konvergenz Dirichletscher Reihen. Math. Z. 11(3–4), 317–318 (1921) | es_ES |
dc.description.references | Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, vol. 2. Oxford University Press, New York (1997) | es_ES |
dc.description.references | Pereyra, M.C., Ward, L.A.: Harmonic Analysis, Volume 63 of Student Mathematical Library. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton. From Fourier to wavelets, IAS/Park City Mathematical Subseries (2012) | es_ES |
dc.description.references | Queffélec, H., Queffélec, M.: Diophantine Approximation and Dirichlet Series. Harish-Chandra Research Institute Lecture Notes, vol. 2. Hindustan Book Agency, New Delhi (2013) | es_ES |
dc.description.references | Rudin, W.: Fourier Analysis on Groups. Wiley Classics Library. Wiley, New York (1990). Reprint of the 1962 original, A Wiley-Interscience Publication | es_ES |
dc.description.references | Schoolmann, I.: Hardy spaces of general Dirichlet series and their maximal inequalities. PhD thesis, Carl von Ossietzky University of Oldenburg (2020) | es_ES |
dc.description.references | Schoolmann, I.: On Bohr’s theorem for general Dirichlet series. Math. Nachr. 293(8), 1591–1612 (2020) | es_ES |