- -

Drone RGB Images as a Reliable Information Source to Determine Legumes Establishment Success

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Drone RGB Images as a Reliable Information Source to Determine Legumes Establishment Success

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra-Boronat, Lorena es_ES
dc.contributor.author Mostaza-Colado, David es_ES
dc.contributor.author Yousfi, Salima es_ES
dc.contributor.author Marin, Jose F. es_ES
dc.contributor.author Mauri, Pedro V. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-10-14T18:02:16Z
dc.date.available 2022-10-14T18:02:16Z
dc.date.issued 2021-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/187825
dc.description.abstract [EN] The use of drones in agriculture is becoming a valuable tool for crop monitoring. There are some critical moments for crop success; the establishment is one of those. In this paper, we present an initial approximation of a methodology that uses RGB images gathered from drones to evaluate the establishment success in legumes based on matrixes operations. Our aim is to provide a method that can be implemented in low-cost nodes with relatively low computational capacity. An index (B1/B2) is used for estimating the percentage of green biomass to evaluate the establishment success. In the study, we include three zones with different establishment success (high, regular, and low) and two species (chickpea and lentils). We evaluate data usability after applying aggregation techniques, which reduces the picture's size to improve long-term storage. We test cell sizes from 1 to 10 pixels. This technique is tested with images gathered in production fields with intercropping at 4, 8, and 12 m relative height to find the optimal aggregation for each flying height. Our results indicate that images captured at 4 m with a cell size of 5, at 8 m with a cell size of 3, and 12 m without aggregation can be used to determine the establishment success. Comparing the storage requirements, the combination that minimises the data size while maintaining its usability is the image at 8 m with a cell size of 3. Finally, we show the use of generated information with an artificial neural network to classify the data. The dataset was split into a training dataset and a verification dataset. The classification of the verification dataset offered 83% of the cases as well classified. The proposed tool can be used in the future to compare the establishment success of different legume varieties or species. es_ES
dc.description.sponsorship This research and the contract of S.Y. were funded by project PDR18-XEROCESPED, under the PDR-CM 2014-2020, by the EU (European Agricultural Fund for Rural Development, EAFRD), Spanish Ministry of Agriculture, Fisheries and Food (MAPA) and Comunidad de Madrid regional government through IMIDRA and the contract of L.P. was funded by Conselleria de Educacion, Cultura y Deporte with the Subvenciones para la contratacion de personal investigador en fase postdoctoral, APOSTD/2019/04. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Drones es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Chickpea es_ES
dc.subject Lentil es_ES
dc.subject Vegetation index es_ES
dc.subject Artificial neural network es_ES
dc.subject Aggregation es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Drone RGB Images as a Reliable Information Source to Determine Legumes Establishment Success es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/drones5030079 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAPAMA//PDR18-XEROCESPED//PDR-CM 2014-2020/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F04//Contrato posdoctoral GVA-Parra Boronat. Proyecto: Ensayos con combinaciones de cespitosas más sostenibles para jardinería pública/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Parra-Boronat, L.; Mostaza-Colado, D.; Yousfi, S.; Marin, JF.; Mauri, PV.; Lloret, J. (2021). Drone RGB Images as a Reliable Information Source to Determine Legumes Establishment Success. Drones. 5(3):1-18. https://doi.org/10.3390/drones5030079 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/drones5030079 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2504-446X es_ES
dc.relation.pasarela S\472924 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Agricultura, Pesca, Alimentación y Medio Ambiente es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem