- -

Human-Centric AI for Trustworthy IoT Systems With Explainable Multilayer Perceptrons

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Human-Centric AI for Trustworthy IoT Systems With Explainable Multilayer Perceptrons

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Magariño, Iván es_ES
dc.contributor.author Muttukrishnan, Rajarajan es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-10-19T18:04:07Z
dc.date.available 2022-10-19T18:04:07Z
dc.date.issued 2019-08-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188303
dc.description.abstract [EN] Internet of Things (IoT) widely use analysis of data with artificial intelligence (AI) techniques in order to learn from user actions, support decisions, track relevant aspects of the user, and notify certain events when appropriate. However, most AI techniques are based on mathematical models that are difficult to understand by the general public, so most people use AI-based technology as a black box that they eventually start to trust based on their personal experience. This article proposes to go a step forward in the use of AI in IoT, and proposes a novel approach within the Human-centric AI field for generating explanations about the knowledge learned by a neural network (in particular a multilayer perceptron) from IoT environments. More concretely, this work proposes two techniques based on the analysis of artificial neuron weights, and another technique aimed at explaining each estimation based on the analysis of training cases. This approach has been illustrated in the context of a smart IoT kitchen that detects the user depression based on the food used for each meal, using a simulator for this purpose. The results revealed that most auto-generated explanations made sense in this context (i.e. 97.0%), and the execution times were low (i.e. 1.5 ms or lower) even considering the common configurations varying independently the number of neurons per hidden layer (up to 20), the number of hidden layers (up to 20) and the number of training cases (up to 4,000). es_ES
dc.description.sponsorship This work was supported in part by the U.K. Engineering and Physical Sciences Research under Grant EP/N028155/1, in part by the Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED) through the CITIES: Ciudades inteligentes totalmente integrales, eficientes y sotenibles under Grant 518RT0558, and in part by the Spanish council of Science, Innovation and Universities from the Spanish Government through the Diseno colaborativo para la promocion del bienestar en ciudades inteligentes inclusivas under Grant TIN2017-88327-R. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Explainable artificial intelligence es_ES
dc.subject Human-centric artificial intelligence, Internet of Things es_ES
dc.subject Multilayer perceptron es_ES
dc.subject Smart kitchen, Emotion detection es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Human-Centric AI for Trustworthy IoT Systems With Explainable Multilayer Perceptrons es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2019.2937521 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88327-R/ES/DISEÑO COLABORATIVO PARA LA PROMOCION DEL BIENESTAR EN CIUDADES INTELIGENTES INCLUSIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CYTED//518RT0558/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FN028155%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Magariño, I.; Muttukrishnan, R.; Lloret, J. (2019). Human-Centric AI for Trustworthy IoT Systems With Explainable Multilayer Perceptrons. IEEE Access. 7:125562-125574. https://doi.org/10.1109/ACCESS.2019.2937521 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2019.2937521 es_ES
dc.description.upvformatpinicio 125562 es_ES
dc.description.upvformatpfin 125574 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\473059 es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder CYTED Ciencia y Tecnología para el Desarrollo es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem