Mostrar el registro sencillo del ítem
dc.contributor.author | Huang, Chenxi | es_ES |
dc.contributor.author | Zong, Yongshuo | es_ES |
dc.contributor.author | Chen, Jinling | es_ES |
dc.contributor.author | Liu, Weipeng | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Mukherjee, Mithun | es_ES |
dc.date.accessioned | 2022-10-19T18:04:22Z | |
dc.date.available | 2022-10-19T18:04:22Z | |
dc.date.issued | 2021-06 | es_ES |
dc.identifier.issn | 1536-1284 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188311 | |
dc.description.abstract | [EN] The Internet of Things (IoT) technology has been widely introduced to the existing medical system. An eHealth system based on IoT devices has gained widespread popularity. In this article, we propose an IoT eHealth framework to provide an autonomous solution for patients with interventional cardiovascular diseases. In this framework, wearable sensors are used to collect a patient's health data, which is daily monitored by a remote doctor. When the monitoring data is abnormal, the remote doctor will ask for image acquisition of the patient's cardiovascular internal conditions. We leverage edge computing to classify these training images by the local base classifier; thereafter, pseudo-labels are generated according to its output. Moreover, a deep segmentation network is leveraged for the segmentation of stent structs in intravascular optical coherence tomography and intravenous ultrasound images of patients. The experimental results demonstrate that remote and local doctors perform real-time visual communication to complete telesurgery. In the experiments, we adopt the U-net backbone with a pretrained SeResNet34 as the encoder to segment the stent structs. Meanwhile, a series of comparative experiments have been conducted to demonstrate the effectiveness of our method based on accuracy, sensitivity, Jaccard, and dice. | es_ES |
dc.description.sponsorship | This work was supported by the National Key Research and Development Program of China (Grant no. 2020YFB1313703), the National Natural Science Foundation of China (Grant no. 62002304), and the Natural Science Foundation of Fujian Province of China (Grant no. 2020J05002). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Wireless Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | A Deep Segmentation Network of Stent Structs Based on IoT for Interventional Cardiovascular Diagnosis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/MWC.001.2000407 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NKRDPC//2020YFB1313703/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//62002304/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Natural Science Foundation of Fujian Province//2020J05002/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Huang, C.; Zong, Y.; Chen, J.; Liu, W.; Lloret, J.; Mukherjee, M. (2021). A Deep Segmentation Network of Stent Structs Based on IoT for Interventional Cardiovascular Diagnosis. IEEE Wireless Communications. 28(3):36-43. https://doi.org/10.1109/MWC.001.2000407 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/MWC.001.2000407 | es_ES |
dc.description.upvformatpinicio | 36 | es_ES |
dc.description.upvformatpfin | 43 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\473272 | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | Natural Science Foundation of Fujian Province | es_ES |
dc.contributor.funder | National Key Research and Development Program of China | es_ES |