Mostrar el registro sencillo del ítem
dc.contributor.author | Guarinos, J.M. | es_ES |
dc.contributor.author | Cirujano, F.G. | es_ES |
dc.contributor.author | Rapeyko, Anastasia | es_ES |
dc.contributor.author | Llabrés i Xamena, Francesc Xavier | es_ES |
dc.date.accessioned | 2022-10-19T18:04:31Z | |
dc.date.available | 2022-10-19T18:04:31Z | |
dc.date.issued | 2021-10 | es_ES |
dc.identifier.issn | 2468-8231 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188316 | |
dc.description.abstract | [EN] Zr-containing UiO-66 and MOF-808 are evaluated for converting levulinic acid (LA) into gamma-valerolactone (GVL) through various routes: (i) Step-wise esterification of LA to n-butyl levulinate (nBuL) and Meerwein-PonndorfVerley (MPV) reduction to GVL; (ii) One-pot two-steps esterification with n-butanol followed by MPV reduction with sec-butanol; and (iii) direct conversion of LA into GVL through a tandem reaction. Selection of this multistep complex reaction evidences the participation of the different acid sites (Lewis or Bronsted) of the material in each individual step: Bronsted-induced acid sites catalyze esterification reaction efficiently, while Lewis acid sites are the preferred sites for the MPV step. Sulfation of MOF-808 is used to enhance the Bronsted acidity of MOF-808, which improves the performance for esterification. However, the sulfate groups introduced are detrimental for the MPV step, since they reduce the intra-pore space available to form the required bulky transition state. These results evidence the need to find the best equilibrium between Bronsted and Lewis acid sites to optimize the outcome of this multistep reaction. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Government is acknowledged through projects MAT2017-82288-C2-1-P and the Severo Ochoa program (SEV-2016-0683). Aula-CEMEX is also acknowledged for a fellowship to JMG. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Molecular Catalysis | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Zirconium MOFs | es_ES |
dc.subject | MOF-808 | es_ES |
dc.subject | UiO-66 | es_ES |
dc.subject | Levulinic acid | es_ES |
dc.subject | Gamma-valerolactone | es_ES |
dc.title | Conversion of levulinic acid to gamma-valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and Bronsted acid sites | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.mcat.2021.111925 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Guarinos, J.; Cirujano, F.; Rapeyko, A.; Llabrés I Xamena, FX. (2021). Conversion of levulinic acid to gamma-valerolactone over Zr-containing metal-organic frameworks: Evidencing the role of Lewis and Bronsted acid sites. Molecular Catalysis. 515:1-11. https://doi.org/10.1016/j.mcat.2021.111925 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.mcat.2021.111925 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 515 | es_ES |
dc.relation.pasarela | S\453569 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio Ciencia, Innovación y Universidades | es_ES |