- -

Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sajjad, Muhammad es_ES
dc.contributor.author Ul Haq, Ijaz es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Ding, Weiping es_ES
dc.contributor.author Muhammad, Khan es_ES
dc.date.accessioned 2022-10-19T18:04:33Z
dc.date.available 2022-10-19T18:04:33Z
dc.date.issued 2019-12 es_ES
dc.identifier.issn 1551-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188318
dc.description.abstract [EN] Due to large volume and high variability of editing tools, protecting multimedia contents, and ensuring their privacy and authenticity has become an increasingly important issue in cyber-physical security of industrial environments, especially industrial surveillance. The approaches authenticating images using their principle content emerge as popular authentication techniques in industrial video surveillance applications. But maintaining a good tradeoff between perceptual robustness and discriminations is the key research challenge in image hashing approaches. In this paper, a robust image hashing method is proposed for efficient authentication of keyframes extracted from surveillance video data. A novel feature extraction strategy is employed in the proposed image hashing approach for authentication by extracting two important features: the positions of rich and nonzero low edge blocks and the dominant discrete cosine transform (DCT) coefficients of the corresponding rich edge blocks, keeping the computational cost at minimum. Extensive experiments conducted from different perspectives suggest that the proposed approach provides a trustworthy and secure way of multimedia data transmission over surveillance networks. Further, the results vindicate the suitability of our proposal for real-time authentication and embedded security in smart industrial applications compared to state-of-the-art methods. es_ES
dc.description.sponsorship This work was supported in part by the National Natural Science Foundation of China under Grant 61976120, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20191445, in part by the Six Talent Peaks Project of Jiangsu Province under Grant XYDXXJS-048, and sponsored by Qing Lan Project of Jiangsu Province, China. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industrial Informatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Image edge detection es_ES
dc.subject Authentication es_ES
dc.subject Surveillance es_ES
dc.subject Feature extraction es_ES
dc.subject Gray-scale, Robustness, Digital authentication, Embedded security, Image hashing es_ES
dc.subject Industrial surveillance es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TII.2019.2921652 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61976120/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Jiangsu Province//BK20191445/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Six Talent Peaks Project in Jiangsu Province//XYDXXJS-048/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sajjad, M.; Ul Haq, I.; Lloret, J.; Ding, W.; Muhammad, K. (2019). Robust Image Hashing Based Efficient Authentication for Smart Industrial Environment. IEEE Transactions on Industrial Informatics. 15(12):6541-6550. https://doi.org/10.1109/TII.2019.2921652 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TII.2019.2921652 es_ES
dc.description.upvformatpinicio 6541 es_ES
dc.description.upvformatpfin 6550 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\473539 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Six Talent Peaks Project in Jiangsu Province es_ES
dc.contributor.funder Natural Science Foundation of Jiangsu Province es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem