- -

An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Han, Tao es_ES
dc.contributor.author Muhammad, Khan es_ES
dc.contributor.author Hussain, Tanveer es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Baik, Sung Wook es_ES
dc.date.accessioned 2022-10-19T18:04:37Z
dc.date.available 2022-10-19T18:04:37Z
dc.date.issued 2021-03-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188320
dc.description.abstract [EN] Green energy management is an economical solution for better energy usage, but the employed literature lacks focusing on the potentials of edge intelligence in controllable Internet of Things (IoT). Therefore, in this article, we focus on the requirements of todays' smart grids, homes, and industries to propose a deep-learning-based framework for intelligent energy management. We predict future energy consumption for short intervals of time as well as provide an efficient way of communication between energy distributors and consumers. The key contributions include edge devices-based real-time energy management via common cloud-based data supervising server, optimal normalization technique selection, and a novel sequence learning-based energy forecasting mechanism with reduced time complexity and lowest error rates. In the proposed framework, edge devices relate to a common cloud server in an IoT network that communicates with the associated smart grids to effectively continue the energy demand and response phenomenon. We apply several preprocessing techniques to deal with the diverse nature of electricity data, followed by an efficient decision-making algorithm for short-term forecasting and implement it over resource-constrained devices. We perform extensive experiments and witness 0.15 and 3.77 units reduced mean-square error (MSE) and root MSE (RMSE) for residential and commercial datasets, respectively. es_ES
dc.description.sponsorship This work was supported in part by the National Research Foundation of Korea Grant Funded by the Korea Government (MSIT) under Grant 2019M3F2A1073179; in part by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" Within the Project under Grant TIN2017-84802-C2-1-P; and in part by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET Joint Activities and Beyond) Project ERANETMED3-227 SMARTWATIR. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Internet of Things es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Forecasting es_ES
dc.subject Energy management es_ES
dc.subject Smart grids es_ES
dc.subject Load forecasting es_ES
dc.subject Machine learning es_ES
dc.subject Internet of Things es_ES
dc.subject Servers es_ES
dc.subject Dependable Internet of Things (IoT) es_ES
dc.subject Edge computing es_ES
dc.subject Energy forecasting es_ES
dc.subject GRU es_ES
dc.subject Long short-term memory (LSTM) es_ES
dc.subject Smart homes es_ES
dc.subject Industries es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JIOT.2020.3013306 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRF//2019M3F2A1073179/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/609475/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, SW. (2021). An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks. IEEE Internet of Things. 8(5):3170-3179. https://doi.org/10.1109/JIOT.2020.3013306 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/JIOT.2020.3013306 es_ES
dc.description.upvformatpinicio 3170 es_ES
dc.description.upvformatpfin 3179 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2327-4662 es_ES
dc.relation.pasarela S\473176 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder National Research Foundation of Korea es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem