Mostrar el registro sencillo del ítem
dc.contributor.author | León-Palacio, Ana | es_ES |
dc.contributor.author | Pastor López, Oscar | es_ES |
dc.date.accessioned | 2022-10-21T18:03:15Z | |
dc.date.available | 2022-10-21T18:03:15Z | |
dc.date.issued | 2021-11-15 | es_ES |
dc.identifier.issn | 2214-5796 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/188554 | |
dc.description.abstract | [EN] The management of the exponential growth of data that Next Generation Sequencing techniques produce has become a challenge for researchers that are forced to delve into an ocean of complex data in order to extract new insights to unravel the secrets of human diseases. Initially, this can be faced as a Big Data-related problem, but the genomic data have particular and relevant challenges that make them different from other Big Data working domains. Genomic data are much more heterogeneous; they are spread in hundreds of repositories, represented in multiple formats, and have different levels of quality. In addition, getting meaningful conclusions from genomic data requires considering all of the relevant surrounding knowledge that is under continuous evolution. In this scenario, the precise identification of what makes Genome Data Management so different is essential in order to provide effective Big Data-based solutions. Genomic projects require dealing with the technological problems associated with data management, nomenclature standards, and quality issues that only robust Information Systems that use Big Data techniques can provide. The main contribution of this paper is to present a Big Data-driven approach for managing genomic data, that is adapted to the particularities of the domain and to show its applicability to improve genetic diagnoses, which is the core of the development of accurate Precision Medicine. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish State Research Agency (grant number TIN2016-80811-P) and the Generalitat Valenciana (grant number PROMETEO/2018/176), and co-financed with ERDF. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Big Data Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Big Data | es_ES |
dc.subject | Genomics | es_ES |
dc.subject | Computer science | es_ES |
dc.subject | Theory and methods | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Enhancing Precision Medicine: A Big Data-Driven Approach for the Management of Genomic Data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.bdr.2021.100253 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//TIN2016-80811-P//UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2018%2F176//GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | León-Palacio, A.; Pastor López, O. (2021). Enhancing Precision Medicine: A Big Data-Driven Approach for the Management of Genomic Data. Big Data Research. 26:1-11. https://doi.org/10.1016/j.bdr.2021.100253 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.bdr.2021.100253 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.relation.pasarela | S\448892 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |