- -

Adversarial Deep Learning approach detection and defense against DDoS attacks in SDN environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adversarial Deep Learning approach detection and defense against DDoS attacks in SDN environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Novaes, Matheus P. es_ES
dc.contributor.author Carvalho, Luiz F. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Lemes Proença, Mario Jr. es_ES
dc.date.accessioned 2022-10-27T09:54:41Z
dc.date.available 2022-10-27T09:54:41Z
dc.date.issued 2021-12 es_ES
dc.identifier.issn 0167-739X es_ES
dc.identifier.uri http://hdl.handle.net/10251/188831
dc.description.abstract [EN] Over the last few years, Software Defined Networking (SDN) paradigm has become an emerging architecture to design future networks and to meet new application demands. SDN provides resources for improving network control and management by separating control and data plane, and the logical control is centralized in a controller. However, the centralized control logic can be an ideal target for malicious attacks, mainly Distributed Denial of Service (DDoS) attacks. Recently, Deep Learning has become a powerful technique applied in cybersecurity, and many Network Intrusion Detection (NIDS) have been proposed in recent researches. Some studies have indicated that deep neural networks are sensitive in detecting adversarial attacks. Adversarial attacks are instances with certain perturbations that cause deep neural networks to misclassify. In this paper, we proposed a detection and defense system based on Adversarial training in SDN, which uses Generative Adversarial Network (GAN) framework for detecting DDoS attacks and applies adversarial training to make the system less sensitive to adversarial attacks. The proposed system includes well-defined modules that enable continuous traffic monitoring using IP flow analysis, enabling the anomaly detection system to act in near-real-time. We conducted the experiments on two distinct scenarios, with emulated data and the public dataset CICDDoS 2019. Experimental results demonstrated that the system efficiently detected up-to-date common types of DDoS attacks compared to other approaches. es_ES
dc.description.sponsorship This work has been partially supported by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grant of Project 310668/2019-0 and by SETI, Brazil/Fundacao Araucaria due to the concession of scholarships; by the "Ministerio de Economia y Competitividad, Spain"in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento"within the project under Grant TIN2017-84802-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Future Generation Computer Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Adversarial attacks es_ES
dc.subject DDoS es_ES
dc.subject Deep Learning es_ES
dc.subject GAN es_ES
dc.subject SDN es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Adversarial Deep Learning approach detection and defense against DDoS attacks in SDN environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.future.2021.06.047 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//310668%2F2019-0/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Novaes, MP.; Carvalho, LF.; Lloret, J.; Lemes Proença, MJ. (2021). Adversarial Deep Learning approach detection and defense against DDoS attacks in SDN environments. Future Generation Computer Systems. 125:156-167. https://doi.org/10.1016/j.future.2021.06.047 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.future.2021.06.047 es_ES
dc.description.upvformatpinicio 156 es_ES
dc.description.upvformatpfin 167 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 125 es_ES
dc.relation.pasarela S\473285 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem