- -

Improved trilateration for indoor localization: Neural network and centroid-based approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improved trilateration for indoor localization: Neural network and centroid-based approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jondhale, Satish R. es_ES
dc.contributor.author Jondhale, Amruta S. es_ES
dc.contributor.author Deshpande, Pallavi S. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-10-27T12:46:03Z
dc.date.available 2022-10-27T12:46:03Z
dc.date.issued 2021-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188862
dc.description.abstract [EN] Location awareness is the key to success to many location-based services applications such as indoor navigation, elderly tracking, emergency management, and so on. Trilateration-based localization using received signal strength measurements is widely used in wireless sensor network-based localization and tracking systems due to its simplicity and low computational cost. However, localization accuracy obtained with the trilateration technique is generally very poor because of fluctuating nature of received signal strength measurements. The reason behind such notorious behavior of received signal strength is dynamicity in target motion and surrounding environment. In addition, the significant localization error is induced during each iteration step during trilateration, which gets propagated in the next iterations. To address this problem, this article presents an improved trilateration-based architecture named Trilateration Centroid Generalized Regression Neural Network. The proposed Trilateration Centroid Generalized Regression Neural Network-based localization algorithm inherits the simplicity and efficiency of three concepts namely trilateration, centroid, and Generalized Regression Neural Network. The extensive simulation results indicate that the proposed Trilateration Centroid Generalized Regression Neural Network algorithm demonstrates superior localization performance as compared to trilateration, and Generalized Regression Neural Network algorithm. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Distributed Sensor Networks (Online) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Trilateration es_ES
dc.subject Centroid es_ES
dc.subject Generalized Regression Neural Network es_ES
dc.subject Wireless sensor network es_ES
dc.subject Received signal strength es_ES
dc.subject Target localization es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Improved trilateration for indoor localization: Neural network and centroid-based approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/15501477211053997 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Jondhale, SR.; Jondhale, AS.; Deshpande, PS.; Lloret, J. (2021). Improved trilateration for indoor localization: Neural network and centroid-based approach. International Journal of Distributed Sensor Networks (Online). 17(11):1-14. https://doi.org/10.1177/15501477211053997 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/15501477211053997 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1550-1477 es_ES
dc.relation.pasarela S\473288 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem