- -

Parallel signal detection for generalized spatial modulation MIMO systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parallel signal detection for generalized spatial modulation MIMO systems

Mostrar el registro completo del ítem

García Mollá, VM.; Simarro, MA.; Martínez Zaldívar, FJ.; Boratto, M.; Alonso-Jordá, P.; Gonzalez, A. (2022). Parallel signal detection for generalized spatial modulation MIMO systems. The Journal of Supercomputing. 78(5):7059-7077. https://doi.org/10.1007/s11227-021-04163-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/188909

Ficheros en el ítem

Metadatos del ítem

Título: Parallel signal detection for generalized spatial modulation MIMO systems
Autor: García Mollá, Víctor Manuel Simarro, M. Angeles Martínez Zaldívar, Francisco José Boratto, Murilo Alonso-Jordá, Pedro Gonzalez, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Generalized Spatial Modulation is a recently developed technique that is designed to enhance the efficiency of transmissions in MIMO Systems. However, the procedure for correctly retrieving the sent signal at the ...[+]
Palabras clave: MIMO communications , Maximum likelihood detection , Parallel computing , Generalized spatial modulation
Derechos de uso: Reconocimiento (by)
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-021-04163-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-021-04163-y
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/
info:eu-repo/grantAgreement/MCIU//RED2018-102668-T/
info:eu-repo/grantAgreement/AEI//RTI2018-098085-B-C41//DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/
Agradecimientos:
This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities and by the European Union through grant RTI2018- 098085-BC41 (MCUI/AEI/FEDER), by GVA through PROMETEO/2019/109, and ...[+]
Tipo: Artículo

References

Telatar E (1999) Capacity of multi-antenna Gaussian channels. Eur Trans Telecommun 10(6):585–595. https://doi.org/10.1002/ett.4460100604

Foschini G, Gans M (1998) On limits of wireless communications in a fading environment when using multiple antennas. Wireless Pers Commun 6(3):311–335. https://doi.org/10.1023/A:1008889222784

Hassibi B, Vikalo H (2005) On Sphere Decoding algorithm. I Expected Complexity, IEEE Trans Signal Process 53:2806–2818 [+]
Telatar E (1999) Capacity of multi-antenna Gaussian channels. Eur Trans Telecommun 10(6):585–595. https://doi.org/10.1002/ett.4460100604

Foschini G, Gans M (1998) On limits of wireless communications in a fading environment when using multiple antennas. Wireless Pers Commun 6(3):311–335. https://doi.org/10.1023/A:1008889222784

Hassibi B, Vikalo H (2005) On Sphere Decoding algorithm. I Expected Complexity, IEEE Trans Signal Process 53:2806–2818

Wolniansky P, Foschini G, Golden G, Valenzuela R (1998) V-BLAST: An Architecture for realizing very high data rates over the rich-scattering wireless channel. In: 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167), pp. 295–300. https://doi.org/10.1109/ISSSE.1998.738086

Li X-Y, Cao X (2005) Low complexity signal detection algorithm for MIMO-OFDM systems. Electron Lett 41:83–85

Guo Z, Nilsson P (2006) Algorithm and implementation of the K-best Sphere decoding for MIMO detection. Select Areas Commun, IEEE J 24:491–503. https://doi.org/10.1109/JSAC.2005.862402

Hassibi B (200) An efficient square-root algorithm for BLAST. In: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), Vol. 2, 2000, pp. II737–II740 vol.2. https://doi.org/10.1109/ICASSP.2000.859065

Agrell E, Eriksson T, Vardy A, Zeger K (2002) Closest point search in lattices. IEEE Trans Commun 48:2201–2214

Schnorr C, Euchner M (1994) Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math Program 48(66):181–191

Fincke U, Pohst M (1985) Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math Comput 44(170):463–471

Wang J, Jia S, Song J (2012) Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Trans Wireless Commun 11–4:1605–1615

Di Renzo M, Haas H, Ghrayeb A, Sugiura S, Hanzo L (2014) Spatial modulation for generalized MIMO: challenges, opportunities, and implementation. Proc IEEE 102:56–103. https://doi.org/10.1109/JPROC.2013.2287851

Patcharamaneepakorn P, Wu S, Wang C-X, Aggoune H, Alwakeel M, Ge X, Di Renzo M (2016) Spectral, energy, and economic efficiency of 5g multicell massive MIMO systems with generalized spatial modulation. IEEE Trans Veh Technol 65:11. https://doi.org/10.1109/TVT.2016.2526628

Liu T, Chen C, Liu C (2019) Fast maximum likelihood detection of the generalized spatially modulated signals using successive sphere decoding algorithms. IEEE Commun Lett 23–4:656–659. https://doi.org/10.1109/LCOMM.2019.2898398

OpenMP v 4.5 specification (2015). http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Damen MO, Gamal HE, Caire G (2003) On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans Inform Theor 49:2389–2402

Kailath T, Vikalo H, Hassibi B (2006) MIMO receive algorithms, Cambridge University Press, p. 302–321. https://doi.org/10.1017/CBO9780511616815.016

Barbero LG, Ratnarajah T, Cowan C (2008) A low-complexity soft-mimo detector based on the fixed-complexity sphere decoder. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2669–2672. https://doi.org/10.1109/ICASSP.2008.4518198

Garcia-Molla VM, Vidal A, Gonzalez A, Roger S (2014) Improved maximum likelihood detection through sphere decoding combined with box optimization. Signal Processing, Elsevier 98:287–294

Altin G, Çelebi M (2018) A simple low-complexity algorithm for generalized spatial modulation. AEU-Int J Electron C 97:63–67

MATLAB, (R2018b), The MathWorks Inc., Natick, Massachusetts, 2018

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem