- -

Efficient data uncertainty management for health industrial internet of things using machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient data uncertainty management for health industrial internet of things using machine learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Haseeb, Khalid es_ES
dc.contributor.author Saba, Tanzila es_ES
dc.contributor.author Rehman, Amjad es_ES
dc.contributor.author Ahmed, Imran es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-10-28T10:28:58Z
dc.date.available 2022-10-28T10:28:58Z
dc.date.issued 2021-11-10 es_ES
dc.identifier.issn 1074-5351 es_ES
dc.identifier.uri http://hdl.handle.net/10251/188910
dc.description.abstract [EN] In modern technologies, the industrial internet of things (IIoT) has gained rapid growth in the fields of medical, transportation, and engineering. It consists of a self-governing configuration and cooperated with sensors to collect, process, and analyze the processes of a real-time system. In the medical system, healthcare IIoT (HIIoT) provides analytics of a huge amount of data and offers low-cost storage systems with the collaboration of cloud systems for the monitoring of patient information. However, it faces certain connectivity, nodes failure, and rapid data delivery challenges in the development of e-health systems. Therefore, to address such concerns, this paper presents an efficient data uncertainty management model for HIIoT using machine learning (EDM-ML) with declining nodes prone and data irregularity. Its aim is to increase the efficacy for the collection and processing of real-time data along with smart functionality against anonymous nodes. It developed an algorithm for improving the health services against disruption of network status and overheads. Also, the multi-objective function decreases the uncertainty in the management of medical data. Furthermore, it expects the routing decisions using a machine learning-based algorithm and increases the uniformity in health operations by balancing the network resources and trust distribution. Finally, it deals with a security algorithm and established control methods to protect the distributed data in the exposed health industry. Extensive simulations are performed, and their results reveal the significant performance of the proposed model in the context of uncertainty and intelligence than benchmark algorithms. es_ES
dc.description.sponsorship This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh Saudi Arabia. Authors are thankful for the support. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof International Journal of Communication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Data management es_ES
dc.subject Distributed algorithms es_ES
dc.subject Industrial internet of things es_ES
dc.subject Machine learning es_ES
dc.subject Risk assessment es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Efficient data uncertainty management for health industrial internet of things using machine learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/dac.4948 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, I.; Lloret, J. (2021). Efficient data uncertainty management for health industrial internet of things using machine learning. International Journal of Communication Systems. 34(16):1-14. https://doi.org/10.1002/dac.4948 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/dac.4948 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 16 es_ES
dc.relation.pasarela S\473283 es_ES
dc.contributor.funder Artificial Intelligence and Data Analytics Lab, Prince Sultan University es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem