- -

On the performance of a GPU-based SoC in a distributed spatial audio system

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the performance of a GPU-based SoC in a distributed spatial audio system

Mostrar el registro completo del ítem

Belloch, JA.; Badía, JM.; Larios, DF.; Personal, E.; Ferrer Contreras, M.; Fuster Criado, L.; Lupoiu, M.... (2021). On the performance of a GPU-based SoC in a distributed spatial audio system. The Journal of Supercomputing (Online). 77(7):6920-6935. https://doi.org/10.1007/s11227-020-03577-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/188947

Ficheros en el ítem

Metadatos del ítem

Título: On the performance of a GPU-based SoC in a distributed spatial audio system
Autor: Belloch, José A. Badía, José M. Larios, Diego F. Personal, Enrique Ferrer Contreras, Miguel Fuster Criado, Laura Lupoiu, Mihaita Gonzalez, Alberto León, Carlos Vidal, Antonio M. Quintana-Ortí, Enrique S.
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Rector - Rector
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Many current system-on-chip (SoC) devices are composed of low-power multicore processors combined with a small graphics accelerator (or GPU) offering a trade-off between computational capacity and low-power consumption. ...[+]
Palabras clave: Wave field synthesis , Spatial audio , Real time , Embedded systems , GPU , Jetson Nano , System-on-chip (SoC)
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing (Online). (eissn: 1573-0484 )
DOI: 10.1007/s11227-020-03577-4
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-020-03577-4
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-82972-R/ES/TECNICAS ALGORITMICAS PARA COMPUTACION DE ALTO RENDIMIENTO CONSCIENTE DEL CONSUMO ENERGETICO Y RESISTENTE A ERRORES/
info:eu-repo/grantAgreement/UJI//UJI-B2019-36/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098085-B-C41/ES/DYNAMIC ACOUSTIC NETWORKS FOR CHANGING ENVIRONMENTS/
info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//PROMETEO%2F2019%2F109//COMUNICACION Y COMPUTACION INTELIGENTES Y SOCIALES/
info:eu-repo/grantAgreement/MINECO//ESP2015-68245-C4-1-P/ES/DISEÑO Y VERIFICACION DE CIRCUITOS ELECTRONICOS A ESCALA NANOMETRICA PARA APLICACIONES ESPACIALES Y TERRESTRES EN AMBIENTES DE RADIACION/
Agradecimientos:
This work has been supported by the Spanish Government through TIN2017-82972-R, ESP2015-68245-C4-1-P, the Valencian Regional Government through PROMETEO/2019/109 and the Universitat Jaume I through UJI-B2019-36.
Tipo: Artículo

References

Berkhout A (1988) A holographic approach to acoustic control. J Audio Eng Soc 36:2764–2778

Theodoropoulos D, Kuzmanov G, Gaydadjiev G (2011) Multi-core platforms for beamforming and wave field synthesis. IEEE Trans Multimed 3(2):235–245

Belloch JA, Gonzalez A, Quintana-Ortí ES, Ferrer M, Välimäki V (2017) GPU-based dynamic wave field synthesis using fractional delay filters and room compensation. IEEE/ACM Trans Audio Speech Lang Process 25(2):435–447 [+]
Berkhout A (1988) A holographic approach to acoustic control. J Audio Eng Soc 36:2764–2778

Theodoropoulos D, Kuzmanov G, Gaydadjiev G (2011) Multi-core platforms for beamforming and wave field synthesis. IEEE Trans Multimed 3(2):235–245

Belloch JA, Gonzalez A, Quintana-Ortí ES, Ferrer M, Välimäki V (2017) GPU-based dynamic wave field synthesis using fractional delay filters and room compensation. IEEE/ACM Trans Audio Speech Lang Process 25(2):435–447

Spors S, Buchner H, Rabenstein R (2004) Efficient active listening room compensation for wave field synthesis. In: Proceedings of the 116th AES Convention, Berlin, Germany, May

Lopez J, Gonzalez A, Fuster L (2005) Room compensation in wave field synthesis by means of multichannel inversion. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp 146–149, Oct 2005

NVIDIA Corp (2020) NVIDIA Jetson Linux Developer Guide. PR-06076-R32, May 2020

Fabregat G, Belloch JA, Badía JM, Cobos M (2020) Design and implementation of acoustic source localization on a low-cost IoT edge platform. IEEE Trans Circuits Syst II: Express Briefs 67(12):3547–3551

Expressif Systems (2018) ESP32 Technical Reference Manual. Version 4.0, Expressif Inc., 2018

Belloch JA, Badía JM, Igual FD, Gonzalez A, Quintana-Ortí ES (2018) Optimized fundamental signal processing operations for energy minimization on heterogeneous mobile devices. IEEE Trans Circuits Syst I: Regul Pap 65(5):1614–1627

Rhee T, Thompson S, Medeiros D, dos Anjos R, Chalmers A (2020) Augmented virtual teleportation for high-fidelity telecollaboration. IEEE Trans Vis Comput Graph 26(5):1923–1933

Belloch JA, Ramos G, Badia JM, Cobos M (2020) An efficient implementation of parallel parametric HRTF models for binaural sound synthesis in mobile multimedia. In: IEEE Access, vol 8, pp 49 562–49 573

Puccinelli D, Haenggi M (2005) Wireless sensor networks: applications and challenges of ubiquitous sensing. IEEE Circuits Syst Mag 5(3):19–31

Chen W-P, Hou J, Sha L (2004) Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Trans Mob Comput 3(3):258–271

Berkhout A, de Vries D, Vogel P (1993) Acoustic control by wave field synthesis. J Acoust Soc Am 93:2764–2778

Spors S, Kuntz A, Rabenstein R (2003) An approach to listening room compensation with wave field synthesis. In: Proceedings of the AES 24th International Conference, Banff, Canada, May

Fuster L, Lopez JJ, Gonzalez A, Faus P (2005) Time and frequency domain room compensation applied to wave field synthesis. In: Proceedings of the International Conference on Digital Audio Effects (DAFx-05), Madrid, Spain, September

Mills D, Martin J, Burbank J, Kasch W (2010) RFC 5905: Network time protocol version 4: protocol and algorithms specification. Internet Engineering Task Force

IEEE standard for a precision clock synchronization protocol for networked measurement and control systems, IEEE Std 1588-2019 (Revision of IEEE Std 1588-2008), pp 1–499, 2020

Neagoe T, Cristea V, Banica L (2006) NTP versus PTP in com puter networks clock synchronization. In: 2006 IEEE International Symposium on Industrial Electronics. IEEE, July

Lombardi MA, Nelson LM, Novick AN, Zhang VS (2001) Time and frequency measurements using the global positioning system. Cal Lab: Int J Metrol 8(3):26–33

Fubin P, Yubo Y, Lei G, Liangliang S (2015) The accuracy of IEEE 1588 time synchronization protocol and its improvement. In: 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). IEEE, July

Barrachina S, Barreda M, Catalán S, Dolz MF, Fabregat G, Mayo R, Quintana-Ortí E (2013) An integrated framework for power-performance analysis of parallel scientific workloads. In:Energy, pp 114–119

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem