- -

Transition technologies towards 6G networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transition technologies towards 6G networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Raddo, Thiago R. es_ES
dc.contributor.author Rommel, Simon es_ES
dc.contributor.author Cimoli, Bruno es_ES
dc.contributor.author Vagionas, Chris es_ES
dc.contributor.author Pérez-Galacho, Diego es_ES
dc.contributor.author Pikasis, Evangelos es_ES
dc.contributor.author Grivas, Evangelos es_ES
dc.contributor.author Ntontin, Konstantinos es_ES
dc.contributor.author Katsikis, Michael es_ES
dc.contributor.author Kritharidis, Dimitrios es_ES
dc.contributor.author Ruggeri, Eugenio es_ES
dc.contributor.author Spaleniak, Izabela es_ES
dc.contributor.author Dubov, Mykhaylo es_ES
dc.contributor.author Klonidis, Dimitrios es_ES
dc.contributor.author Kalfas, George es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Pleros, Nikos es_ES
dc.contributor.author Tafur Monroy, Idelfonso es_ES
dc.date.accessioned 2022-11-03T10:38:25Z
dc.date.available 2022-11-03T10:38:25Z
dc.date.issued 2021-04-21 es_ES
dc.identifier.issn 1687-1472 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189082
dc.description.abstract [EN] The sixth generation (6G) mobile systems will create new markets, services, and industries making possible a plethora of new opportunities and solutions. Commercially successful rollouts will involve scaling enabling technologies, such as cloud radio access networks, virtualization, and artificial intelligence. This paper addresses the principal technologies in the transition towards next generation mobile networks. The convergence of 6G key-performance indicators along with evaluation methodologies and use cases are also addressed. Free-space optics, Terahertz systems, photonic integrated circuits, softwarization, massive multiple-input multiple-output signaling, and multi-core fibers, are among the technologies identified and discussed. Finally, some of these technologies are showcased in an experimental demonstration of a mobile fronthaul system based on millimeter 5G NR OFDM signaling compliant with 3GPP Rel. 15. The signals are generated by a bespoke 5G baseband unit and transmitted through both a 10 km prototype multi-core fiber and 4 m wireless V-band link using a pair of directional 60 GHz antennas with 10 degrees beamwidth. Results shown that the 5G and beyond fronthaul system can successfully transmit signals with both wide bandwidth (up to 800 MHz) and fully centralized signal processing. As a result, this system can support large capacity and accommodate several simultaneous users as a key candidate for next generation mobile networks. Thus, these technologies will be needed for fully integrated, heterogeneous solutions to benefit from hardware commoditization and softwarization. They will ensure the ultimate user experience, while also anticipating the quality-of-service demands that future applications and services will put on 6G networks. es_ES
dc.description.sponsorship This work was partially funded by the blueSPACE and 5G-PHOS 5G-PPP phase 2 projects, which have received funding from the European Union's Horizon 2020 programme under Grant Agreements Number 762055 and 761989. D. PerezGalacho acknowledges the funding of the Spanish Science Ministry through the Juan de la Cierva programme. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof EURASIP Journal on Wireless Communications and Networking es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject 5G es_ES
dc.subject 6G es_ES
dc.subject Key-performance indicator (KPI) es_ES
dc.subject MmWave es_ES
dc.subject Free-space optics (FSO) es_ES
dc.subject Terahertz (THz) es_ES
dc.subject Softwarization es_ES
dc.subject Virtualization es_ES
dc.subject Backhaul es_ES
dc.subject Fronthaul es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Transition technologies towards 6G networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13638-021-01973-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-88029-R/ES/DISPOTIVOS EN FIBRAS ESPECIALES MULTIMODO%2FMULTINUCLEO PARA REDES DE COMUNICACIONES Y APLICACIONES DE SENSORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/761989/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/762055/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Raddo, TR.; Rommel, S.; Cimoli, B.; Vagionas, C.; Pérez-Galacho, D.; Pikasis, E.; Grivas, E.... (2021). Transition technologies towards 6G networks. EURASIP Journal on Wireless Communications and Networking. 2021(1):1-22. https://doi.org/10.1186/s13638-021-01973-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13638-021-01973-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2021 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\456482 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references L. Zhang, Y. Liang, D. Niyato, 6G visions: mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun. 16(8), 1–14 (2019) es_ES
dc.description.references W. Saad, M. Bennis, M. Chen, A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw. 34(3), 134–142 (2020). https://doi.org/10.1109/MNET.001.1900287 es_ES
dc.description.references K.B. Letaief, W. Chen, Y. Shi, J. Zhang, Y.A. Zhang, The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57(8), 84–90 (2019) es_ES
dc.description.references S.J. Nawaz, S.K. Sharma, S. Wyne, M.N. Patwary, M. Asaduzzaman, Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future. IEEE Access 7, 46317–46350 (2019) es_ES
dc.description.references S. Rommel, T.R. Raddo, U. Johannsen, C. Okonkwoa, I. Tafur Monroy, in Proceedings of SPIE Photonics West. Beyond 5G—Wireless Data Center Connectivity (San Francisco, 2019) es_ES
dc.description.references P.T. Dat, A. Kanno, N. Yamamoto, T. Kawanishi, Seamless convergence of fiber and wireless systems for 5G and beyond networks. IEEE/OSA J. Lightwave Technol. 37(2), 592–605 (2019) es_ES
dc.description.references Z. Zhang et al., 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 14(3), 28–41 (2019) es_ES
dc.description.references P. Yang, Y. Xiao, M. Xiao, S. Li, 6G wireless communications: vision and potential techniques. IEEE Netw. 33(4), 70–75 (2019) es_ES
dc.description.references T.S. Rappaport et al., Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019) es_ES
dc.description.references A.D. Giglio, A. Pagano, Scenarios and economic analysis of fronthaul in 5G optical networks. OSA/IEEE J. Lightwave Technol. 37(2), 585–591 (2019) es_ES
dc.description.references B. Madani, M. Ndiaye, in Proceedings of the 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). Autonomous vehicles delivery systems classification: introducing a TSP with a moving depot (Manama 2019) es_ES
dc.description.references 5G Infrastructure Association (5G-IA), 5G pan-European trials roadmap v4.0, Press Release (2018) es_ES
dc.description.references P. Chanclou, L. A. Neto, K. Grzybowski, Z. Tayq, F. Saliou, N. Genay, Mobile fronthaul architecture and technologies: A RAN equipment assessment [invited]. IEEE/OSA J. Opt. Commun. Netw. 10(1), A1–A7 (2018). https://doi.org/10.1364/JOCN.10.0000A1 es_ES
dc.description.references I. A. Alimi, A. L. Teixeira and P. P. Monteiro, Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges, and solutions. IEEE Commun. Surv. Tutor. 20(1), 708–769. https://doi.org/10.1109/COMST.2017.2773462 es_ES
dc.description.references M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G.K. Karagiannidis, E. Bjornson, K. Yang, I. Chih-Lin, A. Ghosh, Millimeter wave communications for future mobile networks. IEEE J. Sel. Areas Commun. 35(9), 1909–1935 (2017) es_ES
dc.description.references S. Qiu, K. Luo, T. Jiang, Beam selection for mmWave massive MIMO systems under hybrid transceiver architecture. IEEE Commun. Lett. 22, 1498–1501 (2018). https://doi.org/10.1109/LCOMM.2018.2829482 es_ES
dc.description.references S. Wu, L. Chiu, J. Wang, Reconfigurable hybrid beamforming for dual-polarized mmWave MIMO channels: stochastic channel modeling and architectural adaptation methods. IEEE Trans. Commun. 66(2), 741–755 (2018). https://doi.org/10.1109/TCOMM.2017.2762689 es_ES
dc.description.references I. Tafur Monroy, T.R. Raddo, S. Rommel, C. Okonkwo, N. Calabretta, U. Johannsen, G. Dubbelman, J. Scholtes, B. Rutten, in Proceedings of the IEEE ICTON. Testing facilities for end-to-end test of vertical applications enabled by 5G networks: Eindhoven 5G brainport testbed (Bucharest, 2018) es_ES
dc.description.references A. El Mahjoubi, T. Mazri, N. Hmina, in Proceedings of the ICWNMC. M2M and eMTC communications via NB-IoT, Morocco first testbed experimental results and RF deployment scenario: new approach to improve main 5G KPIs and performances (Rabat 2017) es_ES
dc.description.references S. Sun, T.S. Rappaport, M. Shafi, in Proceedings of the IEEE Conference on Computer Communications Workshop. Hybrid beamforming for 5G millimeter-wave multi-cell networks (Honolulu, 2018) es_ES
dc.description.references L. A. Neto, J. Maes, P. Larsson-Edefors, J. Nakagawa, K. Onohara and S. J. Trowbridge, Considerations on the use of digital signal processing in future optical access networks. J. Lightwave Technol. 38(3), 598–607. https://doi.org/10.1109/JLT.2019.2946687 es_ES
dc.description.references T.R. Raddo, S. Rommel, C. Vagionas, G. Kalfas, N. Pleros, I. Tafur Monroy, in Proceedings of the European Conference on Networks and Communications. Analog radio-over-fiber 5G fronthaul systems: blueSPACE and 5G-PHOS projects convergence (Valencia, 2019) es_ES
dc.description.references C. Mitsolidou, C. Vagionas, A. Mesodiakaki, P. Maniotis, G. Kalfas, A. Miliou, N. Pleros, C.G.H. Roeloffzen, P.W.L. van Dijk, R.M. Oldenbeuving, in Proceedings of the EuCNC. A 5G C-RAN architecture for Hot-Spots: OFDM based Analog IFoF PHY and MAC layer design (Valencia, 2019) es_ES
dc.description.references Y. Amma. Y. Sasaki, K. Takenaga, S. Matsuo, J. Tu, K. Saitoh, M. Koshiba, T. Morioka, Y. Miyamoto, in Proceedings of the Optical Fiber Communication Conference. High-density multicore fiber with heterogeneous core arrangement (Los Angeles, 2015) es_ES
dc.description.references N. Gkatzios, M. Anastasopoulos, A. Tzanakaki et al., Efficiency gains in 5G softwarised radio access networks. J. Wirel. Commun. Netw. 2019, 183 (2019). https://doi.org/10.1186/s13638-019-1488-z es_ES
dc.description.references S. Imtiaz, G. Koudouridis, H. Ghauch et al., Random forests for resource allocation in 5G cloud radio access networks based on position information. J. Wirel. Commun. Netw. 2018, 142 (2018). https://doi.org/10.1186/s13638-018-1149-7 es_ES
dc.description.references M.D. Renzo, M. Debbah, D. Phan-Huy et al., Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. J. Wirel. Commun. Netw. 2019, 129 (2019). https://doi.org/10.1186/s13638-019-1438-9 es_ES
dc.description.references R. Gerzaguet, N. Bartzoudis, L.G. Baltar et al., The 5G candidate waveform race: a comparison of complexity and performance. J. Wirel. Commun. Netw. 2017, 13 (2017) es_ES
dc.description.references R. Ferrus, O. Sallent, J. Perez-Romero et al. On the automation of RAN slicing provisioning: solution framework and applicability examples. J. Wirel. Commun. Netw. 2019, 167 (2019). https://doi.org/10.1186/s13638-019-1486-1 es_ES
dc.description.references G. Interdonato, E. Bjornson, H. Quoc Ngo et al. Ubiquitous cell-free Massive MIMO communications. J. Wirel. Commun. Netw. 2019, 197 (2019). https://doi.org/10.1186/s13638-019-1507-0 es_ES
dc.description.references B. Wang, L. Peng, P. Ho. Energy-efficient radio-over-fiber system for next-generation cloud radio access networks. J. Wirel. Commun. Netw. 2019, 118 (2019). https://doi.org/10.1186/s13638-019-1457-6 es_ES
dc.description.references V.C.M. Borges, K.V. Cardoso, E. Cerqueira et al. Aspirations, challenges, and open issues for software-based 5G networks in extremely dense and heterogeneous scenarios. J. Wirel. Commun. Netw. 2015, 164 (2015). https://doi.org/10.1186/s13638-015-0380-8 es_ES
dc.description.references X. Liu et al., Efficient mobile fronthaul via DSP-based channel aggregation. OSA/IEEE J. Lightwave Technol. 32(6), 1550–1556 (2016) es_ES
dc.description.references S. Khatibi, L. Caeiro, L.S. Ferreira et al. Modelling and implementation of virtual radio resources management for 5G Cloud RAN. J. Wirel. Commun. Netw. 2017, 128 (2017). https://doi.org/10.1186/s13638-017-0908-1 es_ES
dc.description.references M. Peuster, M. Marchetti, G. García de Blas et al. Automated testing of NFV orchestrators against carrier-grade multi-PoP scenarios using emulation-based smoke testing. J. Wirel. Commun. Netw. 2019, 172 (2019). https://doi.org/10.1186/s13638-019-1493-2 es_ES
dc.description.references D. Sabella, P. Serrano, G. Stea et al. Designing the 5G network infrastructure: a flexible and reconfigurable architecture based on context and content information. J. Wirel. Commun. Netw. 2018, 199 (2018). https://doi.org/10.1186/s13638-018-1215-1 es_ES
dc.description.references A. Abdelkader, E. Jorswieck. Robust adaptive distributed beamforming for energy-efficient network flooding. J. Wirel. Commun. Netw. 2019, 154 (2019). https://doi.org/10.1186/s13638-019-1434-0 es_ES
dc.description.references S. Maimaiti, G. Chuai, W. Gao et al. A low-complexity algorithm for the joint antenna selection and user scheduling in multi-cell multi-user downlink massive MIMO systems. J. Wirel. Commun. Netw. 2019, 208 (2019). https://doi.org/10.1186/s13638-019-1529-7 es_ES
dc.description.references J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, S. Sales, Microwave photonic signal processing. OSA/IEEE J. Lightwave Technol. 31, 571–586 (2013) es_ES
dc.description.references I. Gasulla, D. Barrera, J. Hervas et al., Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers. Sci. Rep. 7, 41727 (2017) es_ES
dc.description.references L.R. Chen, Silicon photonics for microwave photonics applications. OSA/IEEE J. Lightwave Technol. 35, 824–835 (2017) es_ES
dc.description.references C. Zhang, K. Ota, J. Jia, M. Dong, Breaking the blockage for big data transmission: gigabit road communication in autonomous vehicles. IEEE Commun. Mag. 56(6), 152–157 (2018) es_ES
dc.description.references A.S. Cacciapuoti, K. Sankhe, M. Caleffi, K.R. Chowdhury, Beyond 5G: THz-based medium access protocol for mobile heterogeneous networks. IEEE Commun. Mag. 56(6), 110–115 (2018) es_ES
dc.description.references K.M.S. Huq, J.M. Jornet, W.H. Gerstacker, A. Al-Dulaimi, Z. Zhou, J. Aulin, THz communications for mobile heterogeneous networks. IEEE Commun. Mag. 56(6), 94–95 (2018) es_ES
dc.description.references H. Elayan, O. Amin, R.M. Shubair, M. Alouini, in Proceedings of the International Conference on Advanced Communication Technologies and Networking. Terahertz communication: the opportunities of wireless technology beyond 5G (Marrakech, 2018) es_ES
dc.description.references A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, A. García-Zambrana, A. Puerta-Notario, in Proceedings of the OFC. Converging underwater and FSO ground communication links (San Diego, 2019) es_ES
dc.description.references A. Jurado-Navas, T.R. Raddo, J.M. Garrido-Balsells, B.-H.V. Borges, J.J. Vegas Olmos, I. Tafur Monroy, Hybrid optical CDMA/FSO communications network under spatially correlated gamma-gamma scintillation. OSA Opt. Express 24(15), 16799–16814 (2016) es_ES
dc.description.references A. Jurado-Navas, A. Tatarczak, X. Lu, J.J. Vegas Olmos, J.M. Garrido-Balsells, I. Tafur Monroy, 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes. Opt. Express 23, 33721–33732 (2015) es_ES
dc.description.references A. Jurado-Navas, J.M. Garrido-Balsells, J.F. Paris, M. Castillo-Vazquez, A. Puerta-Notario, General analytical expressions for the bit error rate of atmospheric optical communication systems. Opt. Lett. 36, 4095–4097 (2011) es_ES
dc.description.references A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, A. Puerta-Notario, Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels. IET Commun. 6, 390–397 (2011) es_ES
dc.description.references V. Dhasarathan, M. Singh, J. Malhotra, Development of high-speed FSO transmission link for the implementation of 5G and Internet of Things. Wirel. Netw 26, 2403–2412 (2020) es_ES
dc.description.references G. Pan, E. Ekici, Q. Feng, Capacity analysis of log-normal channels under various adaptive transmission schemes. Electron. Lett. 6(3), 346–348 (2012) es_ES
dc.description.references X. Feng, H. Jiang, Z. Wu, T. Wang, H. Jiang, S. Gao, 60 Gbit/s coherent wavelength-division multiplexing free-space optical modulating retro-reflector in a turbulence-tunable atmospheric cell. Opt. Commun. 448, 111–115 (2019) es_ES
dc.description.references E. Illi, F.E. Bouanani, F. Ayoub, in Proceedings of the International Conference on Wireless Networks and Mobile Communications (WINCOM). A performance study of a hybrid 5G RF/FSO transmission system (Rabat, 2017) es_ES
dc.description.references H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M.J. Willner, B.I. Erkmen, K.M. Birnbaum, 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 39(2), 197–200 (2014) es_ES
dc.description.references E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, M. Matsumoto, 1.28 Terabit/s (32×40 Gb/s) WDM transmission ver a double-pass free space optical link. IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009) es_ES
dc.description.references G. Parca, A. Shahpari, V. Carrozzo, G. TosiBeleffi, A.J. Teixeira, Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures. Opt. Eng. 52, 116102 (2013) es_ES
dc.description.references A.T. Pham, P.V. Trinh, V.V. Mai, N.T. Dang, C.-T. Truong, in Proceedings of the Opto-Electronics and Communications Conference (OECC). Hybrid free-space optics/millimeter-wave architecture for 5G cellular backhaul networks (Shanghai, 2015) es_ES
dc.description.references P.T. Dat, A. Kanno, K. Inagaki, T. Umezawa, N. Yamamoto, T. Kawanishi, Hybrid optical wireless-mmWave: ultra high-speed indoor communications for beyond 5G, in IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France (2019), pp. 1003–1004. https://doi.org/10.1109/INFCOMW.2019.8845283 es_ES
dc.description.references D. Nguyen, J. Bohata, M. Komanec, S. Zvanovec, B. Ortega, Z. Ghassemlooy, Seamless 25 GHz transmission of LTE 4/16/64-QAM signals over hybrid SMF/FSO and wireless link. J. Lightwave Technol. 37(24), 6040–6047 (2019). https://doi.org/10.1109/JLT.2019.2945588 es_ES
dc.description.references D. Nguyen, J. Bohata, J. Spacil, D. Dousek, M. Komanec, S. Zvanovec, Z. Ghassemlooy, B. Ortega, M-QAM transmission over hybrid microwave photonic links at the K-band. Opt. Express 27, 33745–33756 (2019) es_ES
dc.description.references J. Liu, P. Wang, X. Zhang, Y. He, X. Zhou, H. Ye, Y. Li, Xu. Shixiang, S. Chen, D. Fan, Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt. Express 27, 16671–16688 (2019) es_ES
dc.description.references S. Lohani, R.T. Glasser, Generative machine learning for robust free-space communication. arXiv:1909.02249 (2019) es_ES
dc.description.references E.J. Shin, V.W.S. Chan, in Proceedings of the Global Communications Conference. Optical communication over the turbulent atmospheric channel using spatial diversity (Taipei, 2002) es_ES
dc.description.references R. Munoz et al., in Proceedings of the European Conference on Networks and Communications (EuCNC). SDN/NFV 5G fronthaul networks integrating analog/digital RoF, optical beamforming, power over fiber and optical SDM technologies (Valencia, 2019) es_ES
dc.description.references G. Kalfas et al., Next generation fiber-wireless fronthaul for 5G mmWave networks. IEEE Commun. Mag. 57(3), 138–144 (2019) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem