Mostrar el registro sencillo del ítem
dc.contributor.author | de Assis, Marcos V. O. | es_ES |
dc.contributor.author | Carvalho, Luiz F. | es_ES |
dc.contributor.author | Rodrigues, Joel J. P. C. | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Proenca Jr, Mario L. | es_ES |
dc.date.accessioned | 2022-11-03T10:38:28Z | |
dc.date.available | 2022-11-03T10:38:28Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0045-7906 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189084 | |
dc.description.abstract | [EN] The Internet of Things (IoT) paradigm brings new and promising possibilities for services and products. The heterogeneity of IoT devices highlights the inefficiency of traditional networks' structures to support their specific requirements due to their lack of flexibility. Thus, Software-defined Networking (SDN) is commonly associated with IoT since this architecture provides a more flexible and manageable network environment. As shown by recent events, IoT devices may be used for large scale Distributed Denial of Service (DDoS) attacks due to their lack of security. This kind of attack is commonly detected and mitigated at the destination-end network but, due to the massive volume of information that IoT botnets generate, this approach is becoming impracticable. We propose in this paper a near real-time SDN security system that both prevents DDoS attacks on the source-end network and protects the sources SDN controller against traffic impairment. For this, we apply and test a Convolutional Neural Network (CNN) for DDoS detection, and describe how the system could mitigate the detected attacks. The performance outcomes were performed in two test scenarios, and the results pointed out that the proposed SDN security system is promising against next-generation DDoS attacks. (C) 2020 Published by Elsevier Ltd. | es_ES |
dc.description.sponsorship | This study was financed in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grants 310668/2019-0 and 309335/2017-5; by the Ministerio de Economia y Competitividad in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P; by FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/EEA/50008/2020; and by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) by the granting of a scholarship through the "Programa de Doutorado Sanduche no Exterior (PDSE) 2019". Finally, this work was supported by Federal University of Parana(UFPR) under Project Banpesq/2014016797. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers & Electrical Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Software-defined Network | es_ES |
dc.subject | Internet of Things | es_ES |
dc.subject | DDoS | es_ES |
dc.subject | CNN | es_ES |
dc.subject | Botnet | es_ES |
dc.subject | Deep Learning | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Near real-time security system applied to SDN environments in IoT networks using convolutional neural network | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compeleceng.2020.106738 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//310668%2F2019-0/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//309335%2F2017-5/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UFPR//Banpesq%2F2014016797/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integrada de Zonas Costeras - Institut d'Investigació per a la Gestió Integrada de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | De Assis, MVO.; Carvalho, LF.; Rodrigues, JJPC.; Lloret, J.; Proenca Jr, ML. (2020). Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Computers & Electrical Engineering. 86:1-16. https://doi.org/10.1016/j.compeleceng.2020.106738 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compeleceng.2020.106738 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 86 | es_ES |
dc.relation.pasarela | S\473451 | es_ES |
dc.contributor.funder | Universidade Federal do Paraná | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |