- -

Near real-time security system applied to SDN environments in IoT networks using convolutional neural network

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Near real-time security system applied to SDN environments in IoT networks using convolutional neural network

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de Assis, Marcos V. O. es_ES
dc.contributor.author Carvalho, Luiz F. es_ES
dc.contributor.author Rodrigues, Joel J. P. C. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Proenca Jr, Mario L. es_ES
dc.date.accessioned 2022-11-03T10:38:28Z
dc.date.available 2022-11-03T10:38:28Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0045-7906 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189084
dc.description.abstract [EN] The Internet of Things (IoT) paradigm brings new and promising possibilities for services and products. The heterogeneity of IoT devices highlights the inefficiency of traditional networks' structures to support their specific requirements due to their lack of flexibility. Thus, Software-defined Networking (SDN) is commonly associated with IoT since this architecture provides a more flexible and manageable network environment. As shown by recent events, IoT devices may be used for large scale Distributed Denial of Service (DDoS) attacks due to their lack of security. This kind of attack is commonly detected and mitigated at the destination-end network but, due to the massive volume of information that IoT botnets generate, this approach is becoming impracticable. We propose in this paper a near real-time SDN security system that both prevents DDoS attacks on the source-end network and protects the sources SDN controller against traffic impairment. For this, we apply and test a Convolutional Neural Network (CNN) for DDoS detection, and describe how the system could mitigate the detected attacks. The performance outcomes were performed in two test scenarios, and the results pointed out that the proposed SDN security system is promising against next-generation DDoS attacks. (C) 2020 Published by Elsevier Ltd. es_ES
dc.description.sponsorship This study was financed in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grants 310668/2019-0 and 309335/2017-5; by the Ministerio de Economia y Competitividad in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P; by FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/EEA/50008/2020; and by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) by the granting of a scholarship through the "Programa de Doutorado Sanduche no Exterior (PDSE) 2019". Finally, this work was supported by Federal University of Parana(UFPR) under Project Banpesq/2014016797. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers & Electrical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Software-defined Network es_ES
dc.subject Internet of Things es_ES
dc.subject DDoS es_ES
dc.subject CNN es_ES
dc.subject Botnet es_ES
dc.subject Deep Learning es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Near real-time security system applied to SDN environments in IoT networks using convolutional neural network es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compeleceng.2020.106738 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//310668%2F2019-0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//309335%2F2017-5/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UFPR//Banpesq%2F2014016797/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integrada de Zonas Costeras - Institut d'Investigació per a la Gestió Integrada de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation De Assis, MVO.; Carvalho, LF.; Rodrigues, JJPC.; Lloret, J.; Proenca Jr, ML. (2020). Near real-time security system applied to SDN environments in IoT networks using convolutional neural network. Computers & Electrical Engineering. 86:1-16. https://doi.org/10.1016/j.compeleceng.2020.106738 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compeleceng.2020.106738 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 86 es_ES
dc.relation.pasarela S\473451 es_ES
dc.contributor.funder Universidade Federal do Paraná es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem