- -

Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muhammad, Khan es_ES
dc.contributor.author Ullah, Amin es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Del Ser, Javier es_ES
dc.contributor.author de Albuquerque, Victor Hugo C. es_ES
dc.date.accessioned 2022-11-03T10:38:33Z
dc.date.available 2022-11-03T10:38:33Z
dc.date.issued 2021-07 es_ES
dc.identifier.issn 1524-9050 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189087
dc.description.abstract [EN] Advances in information and signal processing technologies have a significant impact on autonomous driving (AD), improving driving safety while minimizing the efforts of human drivers with the help of advanced artificial intelligence (AI) techniques. Recently, deep learning (DL) approaches have solved several real-world problems of complex nature. However, their strengths in terms of control processes for AD have not been deeply investigated and highlighted yet. This survey highlights the power of DL architectures in terms of reliability and efficient real-time performance and overviews state-of-the-art strategies for safe AD, with their major achievements and limitations. Furthermore, it covers major embodiments of DL along the AD pipeline including measurement, analysis, and execution, with a focus on road, lane, vehicle, pedestrian, drowsiness detection, collision avoidance, and traffic sign detection through sensing and vision-based DL methods. In addition, we discuss on the performance of several reviewed methods by using different evaluation metrics, with critics on their pros and cons. Finally, this survey highlights the current issues of safe DL-based AD with a prospect of recommendations for future research, rounding up a reference material for newcomers and researchers willing to join this vibrant area of Intelligent Transportation Systems. es_ES
dc.description.sponsorship This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government (MSIT) (2019-0-00136, Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation); The work of Javier Del Ser was supported by the Basque Government through the EMAITEK and ELKARTEK Programs, as well as by the Department of Education of this institution (Consolidated Research Group MATHMODE, IT1294-19); VHCA received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6 and #430274/2018-1). es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Intelligent Transportation Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Autonomous driving (AD) es_ES
dc.subject Artificial Intelligence (AI) es_ES
dc.subject Deep Learning (DL) es_ES
dc.subject Decision making es_ES
dc.subject Vehicular safety es_ES
dc.subject Vehicular technology es_ES
dc.subject Intelligent sensors es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TITS.2020.3032227 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IITP//2019-0-00136/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Eusko Jaurlaritza//IT1294-19/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//304315%2F2017-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//430274%2F2018-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integrada de Zonas Costeras - Institut d'Investigació per a la Gestió Integrada de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; De Albuquerque, VHC. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems. 22(7):4316-4336. https://doi.org/10.1109/TITS.2020.3032227 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TITS.2020.3032227 es_ES
dc.description.upvformatpinicio 4316 es_ES
dc.description.upvformatpfin 4336 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\473214 es_ES
dc.contributor.funder Eusko Jaurlaritza es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Institute for Information and Communications Technology Promotion, Corea del Sur es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem