Mostrar el registro sencillo del ítem
dc.contributor.author | Muhammad, Khan | es_ES |
dc.contributor.author | Ullah, Amin | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Del Ser, Javier | es_ES |
dc.contributor.author | de Albuquerque, Victor Hugo C. | es_ES |
dc.date.accessioned | 2022-11-03T10:38:33Z | |
dc.date.available | 2022-11-03T10:38:33Z | |
dc.date.issued | 2021-07 | es_ES |
dc.identifier.issn | 1524-9050 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189087 | |
dc.description.abstract | [EN] Advances in information and signal processing technologies have a significant impact on autonomous driving (AD), improving driving safety while minimizing the efforts of human drivers with the help of advanced artificial intelligence (AI) techniques. Recently, deep learning (DL) approaches have solved several real-world problems of complex nature. However, their strengths in terms of control processes for AD have not been deeply investigated and highlighted yet. This survey highlights the power of DL architectures in terms of reliability and efficient real-time performance and overviews state-of-the-art strategies for safe AD, with their major achievements and limitations. Furthermore, it covers major embodiments of DL along the AD pipeline including measurement, analysis, and execution, with a focus on road, lane, vehicle, pedestrian, drowsiness detection, collision avoidance, and traffic sign detection through sensing and vision-based DL methods. In addition, we discuss on the performance of several reviewed methods by using different evaluation metrics, with critics on their pros and cons. Finally, this survey highlights the current issues of safe DL-based AD with a prospect of recommendations for future research, rounding up a reference material for newcomers and researchers willing to join this vibrant area of Intelligent Transportation Systems. | es_ES |
dc.description.sponsorship | This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government (MSIT) (2019-0-00136, Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation); The work of Javier Del Ser was supported by the Basque Government through the EMAITEK and ELKARTEK Programs, as well as by the Department of Education of this institution (Consolidated Research Group MATHMODE, IT1294-19); VHCA received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6 and #430274/2018-1). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Intelligent Transportation Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Autonomous driving (AD) | es_ES |
dc.subject | Artificial Intelligence (AI) | es_ES |
dc.subject | Deep Learning (DL) | es_ES |
dc.subject | Decision making | es_ES |
dc.subject | Vehicular safety | es_ES |
dc.subject | Vehicular technology | es_ES |
dc.subject | Intelligent sensors | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TITS.2020.3032227 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/IITP//2019-0-00136/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Eusko Jaurlaritza//IT1294-19/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//304315%2F2017-6/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//430274%2F2018-1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integrada de Zonas Costeras - Institut d'Investigació per a la Gestió Integrada de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; De Albuquerque, VHC. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems. 22(7):4316-4336. https://doi.org/10.1109/TITS.2020.3032227 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/TITS.2020.3032227 | es_ES |
dc.description.upvformatpinicio | 4316 | es_ES |
dc.description.upvformatpfin | 4336 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\473214 | es_ES |
dc.contributor.funder | Eusko Jaurlaritza | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.contributor.funder | Institute for Information and Communications Technology Promotion, Corea del Sur | es_ES |