- -

A QoE adaptive management system for high definition video streaming over wireless networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A QoE adaptive management system for high definition video streaming over wireless networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Taha, Miran es_ES
dc.contributor.author Canovas, Alejandro es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Ali, Aree es_ES
dc.date.accessioned 2022-11-03T10:38:38Z
dc.date.available 2022-11-03T10:38:38Z
dc.date.issued 2021-05 es_ES
dc.identifier.issn 1018-4864 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189092
dc.description.abstract [EN] The development of the smart devices had led to demanding high-quality streaming videos over wireless communications. In Multimedia technology, the Ultra-High Definition (UHD) video quality has an important role due to the smart devices that are capable of capturing and processing high-quality video content. Since delivery of the high-quality video stream over the wireless networks adds challenges to the end-users, the network behaviors 'factors such as delay of arriving packets, delay variation between packets, and packet loss, are impacted on the Quality of Experience (QoE). Moreover, the characteristics of the video and the devices are other impacts, which influenced by the QoE. In this research work, the influence of the involved parameters is studied based on characteristics of the video, wireless channel capacity, and receivers' aspects, which collapse the QoE. Then, the impact of the aforementioned parameters on both subjective and objective QoE is studied. A smart algorithm for video stream services is proposed to optimize assessing and managing the QoE of clients (end-users). The proposed algorithm includes two approaches: first, using the machine-learning model to predict QoE. Second, according to the QoE prediction, the algorithm manages the video quality of the end-users by offering better video quality. As a result, the proposed algorithm which based on the least absolute shrinkage and selection operator (LASSO) regression is outperformed previously proposed methods for predicting and managing QoE of streaming video over wireless networks. es_ES
dc.description.sponsorship This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" with in the Project under Grant TIN2017-84802-C2-1-P. This study has been partially done in the computer science departments at the (University of Sulaimani and Halabja). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Telecommunication Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adaptive streaming es_ES
dc.subject QoE assessment and management es_ES
dc.subject Smart algorithm es_ES
dc.subject Prediction model es_ES
dc.subject Wireless network es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A QoE adaptive management system for high definition video streaming over wireless networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11235-020-00741-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84802-C2-1-P/ES/RED COGNITIVA DEFINIDA POR SOFTWARE PARA OPTIMIZAR Y SECURIZAR TRAFICO DE INTERNET DE LAS COSAS CON INFORMACION CRITICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integrada de Zonas Costeras - Institut d'Investigació per a la Gestió Integrada de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Taha, M.; Canovas, A.; Lloret, J.; Ali, A. (2021). A QoE adaptive management system for high definition video streaming over wireless networks. Telecommunication Systems. 77(1):63-81. https://doi.org/10.1007/s11235-020-00741-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11235-020-00741-2 es_ES
dc.description.upvformatpinicio 63 es_ES
dc.description.upvformatpfin 81 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 77 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\473266 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Cisco report, Last Accessed July 1, 2017. [Available Online]: http://bit.ly/2gg1F6B es_ES
dc.description.references Kitamura, M., Shirai, D., Kaneko, K., Murooka, T., Sawabe, T., Fujii, T., & Takahara, A. (2011). Beyond 4K: 8K 60p live video streaming to multiple sites. Future Generation Computer Systems, 27(7), 952–959. https://doi.org/10.1016/j.future.2010.11.025. es_ES
dc.description.references Juluri, P., Tamarapalli, V., & Medhi, D. (2016). Measurement of quality of experience of video-on-demand services: A survey. IEEE Communications Surveys & Tutorials, 18(1), 401–418. es_ES
dc.description.references Frnda, J., Voznak, M., & Sevcik, L. (2016). Impact of packet loss and delay variation on the quality of real-time video streaming. Telecommunication Systems, 62(2), 265–275. es_ES
dc.description.references Al-Jobouri, L., Fleury, M., & Ghanbari, M. (2016). Broadband wireless video streaming: achieving unicast and multicast IPTV in a practical manner. Multimedia Tools and Applications, Springer, 75(11), 6403–6430. https://doi.org/10.1007/s11042-015-2577-6. es_ES
dc.description.references Moorthy, A. K., & Bovik, A. C. (2011). Visual quality assessment algorithms: What does the future hold? Multimedia Tools and Applications, 51(2), 675–696. https://doi.org/10.1007/s11042-010-0640-x. es_ES
dc.description.references T.-L. Chin, T.-Y. Chen, C.-C. Huang, T.-R. (2015). Hsiang. Scalable video streaming for multicast in wireless networks. In Intelligent Signal Processing and Communication Systems (ISPACS), International Symposium on, IEEE, Nusa Dua, Indonesia, pp. 182–187, Nov. 2015. https://doi.org/10.1109/ISPACS.2015.7432762 es_ES
dc.description.references Shmueli, R., Hadar, O., Huber, R., Maltz, M., & Huber, M. (2008). Effects of an encoding scheme on perceived video quality transmitted over lossy internet protocol networks. Transactions on Broadcasting, IEEE, 54(3), 628–640. es_ES
dc.description.references Seufert, M., Egger, S., Slanina, M., Zinner, T., Hoßfeld, T., & Tran-Gia, P. (2015). A survey on quality of experience of HTTP adaptive streaming. IEEE Communications Surveys & Tutorials, 17(1), 469–492. es_ES
dc.description.references Ge, C., Wang, N., Foster, G., & Wilson, M. (2017). Towards QoE-assured 4K Video-on-Demand Delivery through Mobile Edge Virtualization with Adaptive Prefetching. Transactions on Multimedia, IEEE, PP(99), 1–1. https://doi.org/10.1109/TMM.2017.2735301. es_ES
dc.description.references Lim, W.-S., Kim, D.-W., & Suh, Y.-J. (2012). Design of efficient multicast protocol for IEEE 802.11 n WLANs and cross-layer optimization for scalable video streaming. Transactions on Mobile Computing, IEEE, 11(5), 780–792. https://doi.org/10.1109/TMC.2011.95. es_ES
dc.description.references Su, G.-M., Su, X., Bai, Y., Wang, M., Vasilakos, A. V., & Wang, H. (2016). QoE in video streaming over wireless networks: perspectives and research challenges. Wireless networks, Springer, 22(5), 571–1593. https://doi.org/10.1007/s11276-015-1028-7. es_ES
dc.description.references Lloret, J., Garcia, M., Atenas, M., & Canovas, A. (2010). A QoE management system to improve the IPTV networks. International Journal of Communication Systems, 24(1), 118–138. https://doi.org/10.1002/dac.1145. es_ES
dc.description.references Richards, A., Rogers, G., Antoniades, M., Witana, V. (1998) Mapping user level QoS from a single parameter. In Second IFIP/IEEE International Conference of Management of Multimedia Networks and Services, (pp. 16–18) Versailles, France, November 1998. es_ES
dc.description.references Soh, K., & Iah, S. (2001). Subjectively assessing method for audiovisual quality using equivalent signal-to-noise ratio conversion. Transactions of the Institute of Electronics, Information and Communication Engineers, J84A(11), 1305–1313. es_ES
dc.description.references Sedano, I., Brunnström, K., Kihl, M., & Aurelius, A. (2014). Full-reference video quality metric assisted the development of no-reference bitstream video quality metrics for real-time network monitoring. EURASIP Journal on Image and Video Processing, Springer, 2014(1), 4. es_ES
dc.description.references Hadizadeh, H., & Bajic, I. V. (2017). Full-reference objective quality assessment of tone-mapped images. Transactions on Multimedia, IEEE, PP(99), 1–1. https://doi.org/10.1109/TMM.2017.2740023. es_ES
dc.description.references Wang, H., Chan, M. C., & Ooi, W. T. (2015). Wireless multicast for zoomable video streaming. ACM Transactions on Multimedia, Computing Communications, and Applications (TOMM), 12(1), 5. https://doi.org/10.1145/2801123. es_ES
dc.description.references Seshadrinathan, K., Soundararajan, R., Bovik, A. C., & Cormack, L. K. (2010). Study of subjective and objective quality assessment of video. IEEE transactions on Image Processing, 19(6), 1427–1441. https://doi.org/10.1109/TIP.2010.2042111. es_ES
dc.description.references Taha, M., Jimenez, J. M., Canovas, A., & Lloret, J. (2018). Intelligent Algorithm for Enhancing MPEG-DASH QoE in eMBMS. Network Protocols and Algorithms, 9(3–4), 94–114. https://doi.org/10.5296/npa.v9i3-4.12573. es_ES
dc.description.references Taha, M., Lloret, J., Canovas, A., & Garcia, L. (2017). Survey of transportation of adaptive multimedia streaming service in internet. Network Protocols and Algorithms, 9(1–2), 85–125. https://doi.org/10.5296/npa.v9i1-2.12412. es_ES
dc.description.references Mateos-Cañas, I., Sendra, S., Lloret, J., & Jimenez, J. M. (2017). Autonomous video compression system for environmental monitoring. Network Protocols and Algorithms. https://doi.org/10.5296/npa.v9i1-2.12386. es_ES
dc.description.references Vega, M. T., Perra, C., De Turck, F., & Liotta, A. (2018). A Review of Predictive Quality of Experience Management in Video Streaming Services. IEEE Transactions on Broadcasting, 64(2), 432–445. es_ES
dc.description.references Taha, M., Lloret, J., Ali, A., & Garcia, L. (2018). Adaptive video streaming testbed design for performance study and assessment of QoE. International Journal of Communication Systems, 31(9), e3551. https://doi.org/10.1002/dac.3551. es_ES
dc.description.references Cánovas, A., Taha, M., Lloret, J., & Tomas, J. (2019). A cognitive network management system to improve QoE in stereoscopic IPTV service. International Journal of Communication Systems, 32(12), e3992. es_ES
dc.description.references Abdullah, M. T. (2018). Smart client-server protocol and architecture for adaptive multimedia streaming. PhD diss., UniversitatPolitècnica de València. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem