Mostrar el registro sencillo del ítem
dc.contributor.author | Majeed, Saqib | es_ES |
dc.contributor.author | Sohail, Adnan | es_ES |
dc.contributor.author | Qureshi, Kashif Naseer | es_ES |
dc.contributor.author | Kumar, Arvind | es_ES |
dc.contributor.author | Iqbal, Saleem | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.date.accessioned | 2022-11-03T10:38:44Z | |
dc.date.available | 2022-11-03T10:38:44Z | |
dc.date.issued | 2020-12-11 | es_ES |
dc.identifier.issn | 1687-1472 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189096 | |
dc.description.abstract | [EN] Cellular networks based on new generation standards are the major enabler for Internet of things (IoT) communication. Narrowband-IoT and Long Term Evolution for Machines are the newest wide area network-based cellular technologies for IoT applications. The deployment of unmanned aerial vehicles (UAVs) has gained the popularity in cellular networks by using temporary ubiquitous coverage in the areas where the infrastructure-based networks are either not available or have vanished due to some disasters. The major challenge in such networks is the efficient UAVs deployment that covers maximum users and area with the minimum number of UAVs. The performance and sustainability of UAVs is largely dependent upon the available residual energy especially in mission planning. Although energy harvesting techniques and efficient storage units are available, but these have their own constraints and the limited onboard energy still severely hinders the practical realization of UAVs. This paper employs neglected parameters of UAVs energy consumption in order to get actual status of available energy and proposed a solution that more accurately estimates the UAVs operational airtime. The proposed model is evaluated in test bed and simulation environment where the results show the consideration of such explicit usage parameters achieves significant improvement in airtime estimation. | es_ES |
dc.description.sponsorship | The research is funded by the Department of Computer Science, Iqra University, Islamabad Campus, Pakistan | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer (Biomed Central Ltd.) | es_ES |
dc.relation.ispartof | EURASIP Journal on Wireless Communications and Networking | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Energy aware | es_ES |
dc.subject | UAV | es_ES |
dc.subject | UE | es_ES |
dc.subject | Dynamic deployment | es_ES |
dc.subject | Communicational energy | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in IoT-enabled fifth generation cellular networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/s13638-020-01877-0 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integrada de Zonas Costeras - Institut d'Investigació per a la Gestió Integrada de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Majeed, S.; Sohail, A.; Qureshi, KN.; Kumar, A.; Iqbal, S.; Lloret, J. (2020). Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in IoT-enabled fifth generation cellular networks. EURASIP Journal on Wireless Communications and Networking. 2020(1):1-14. https://doi.org/10.1186/s13638-020-01877-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1186/s13638-020-01877-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2020 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\473213 | es_ES |
dc.contributor.funder | Iqra University | es_ES |
dc.description.references | K. Kumar, S. Kumar, O. Kaiwartya, A. Sikandar, R. Kharel, J.L. Mauri, Internet of unmanned aerial vehicles: QoS provisioning in aerial ad-hoc networks. Sensors 20(11), 3160 (2020) | es_ES |
dc.description.references | M. Marchese, A. Moheddine, F. Patrone, IoT and UAV integration in 5G hybrid terrestrial-satellite networks. Sensors 19(17), 3704 (2019) | es_ES |
dc.description.references | K. Kumar, S. Kumar, O. Kaiwartya, P.K. Kashyap, J. Lloret, H. Song, Drone assisted flying ad-hoc networks: mobility and service oriented modeling using neuro-fuzzy. Ad Hoc Netw. 102242 (2020) | es_ES |
dc.description.references | X. Li, Deployment of drone base stations for cellular communication without apriori user distribution information, in 2018 37th Chinese Control Conference (CCC) (IEEE, 2018), pp. 7274–7281 | es_ES |
dc.description.references | J.P. Pereira, I.M. Lopes, Next generation access networks: infrastructure sharing, in World Conference on Information Systems and Technologies (Springer, 2017), pp. 244–252 | es_ES |
dc.description.references | A. Mukherjee, N. Dey, N. Kausar, A.S. Ashour, R. Taiar, A.E. Hassanien, A disaster management specific mobility model for flying ad-hoc network, in Emergency and Disaster Management: Concepts, Methodologies, Tools, and Applications (IGI Global, 2019), pp. 279–311 | es_ES |
dc.description.references | K.N. Qureshi, A.H. Abdullah, O. Kaiwartya, S. Iqbal, R.A. Butt, F. Bashir, A dynamic congestion control scheme for safety applications in vehicular ad hoc networks. Comput. Electr. Eng. 72, 774–788 (2018) | es_ES |
dc.description.references | B. Perabathini, K. Tummuri, A. Agrawal, V.S. Varma, Efficient 3D placement of UAVs with QoS assurance in ad hoc wireless networks, in 2019 28th International Conference on Computer Communication and Networks (ICCCN) (IEEE, 2019), pp. 1–6 | es_ES |
dc.description.references | J. Lu, S. Wan, X. Chen, P. Fan, Energy-efficient 3D UAV-BS placement versus mobile users' density and circuit power, in 2017 IEEE Globecom Workshops (GC Wkshps) (IEEE, 2017), pp. 1–6 | es_ES |
dc.description.references | R. Yadav, W. Zhang, O. Kaiwartya, P.R. Singh, I.A. Elgendy, Y.C. Tian, Adaptive energy-aware algorithms for minimizing energy consumption and SLA violation in cloud computing. IEEE Access 6, 55923–55936 (2018) | es_ES |
dc.description.references | C.-C. Lai, C.-T. Chen, L.-C. Wang, On-demand density-aware uav base station 3d placement for arbitrarily distributed users with guaranteed data rates. IEEE Wirel. Commun. Lett. 8(3), 913–916 (2019) | es_ES |
dc.description.references | S. Iqbal, K.N. Qureshi, N. Kanwal, G. Jeon, Collaborative energy efficient zone‐based routing protocol for multihop Internet of Things, Transactions on Emerging Telecommunications Technologies (2020), p. e3885 | es_ES |
dc.description.references | F. Aadil, A. Raza, M. Khan, M. Maqsood, I. Mehmood, S. Rho, Energy aware cluster-based routing in flying ad-hoc networks. Sensors 18(5), 1413 (2018) | es_ES |
dc.description.references | Y. Chen, D. Baek, A. Bocca, A. Macii, E. Macii, M. Poncino, A case for a battery-aware model of drone energy consumption, in 2018 IEEE International Telecommunications Energy Conference (INTELEC) (IEEE, 2018), pp. 1–8 | es_ES |
dc.description.references | A.A.A. Ateya, A. Muthanna, R. Kirichek, M. Hammoudeh, A. Koucheryavy, Energy-and latency-aware hybrid offloading algorithm for UAVs. IEEE Access 7, 37587–37600 (2019) | es_ES |
dc.description.references | A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez, J. Yuan, Survey on uav cellular communications: practical aspects, standardization advancements, regulation, and security challenges, IEEE Communications Surveys & Tutorials (2019) | es_ES |
dc.description.references | L. Wang, B. Hu, S. Chen, Energy efficient placement of a drone base station for minimum required transmit power, IEEE Wireless Communications Letters (2018) | es_ES |
dc.description.references | T.M. Cabreira, C. Di Franco, P.R. Ferreira, G.C. Buttazzo, Energy-aware spiral coverage path planning for uav photogrammetric applications. IEEE Robot. Automat. Lett. 3(4), 3662–3668 (2018) | es_ES |
dc.description.references | M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016) | es_ES |
dc.description.references | M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs. IEEE Trans. Wirel. Commun. 15(6), 3949–3963 (2016) | es_ES |
dc.description.references | K. Li, W. Ni, X. Wang, R.P. Liu, S.S. Kanhere, S. Jha, Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE Trans. Mob. Comput. 15(6), 1377–1386 (2015) | es_ES |
dc.description.references | A.E. Abdulla, Z.M. Fadlullah, H. Nishiyama, N. Kato, F. Ono, R. Miura, An optimal data collection technique for improved utility in UAS-aided networks, in IEEE INFOCOM 2014-IEEE Conference on Computer Communications (IEEE, 2014), pp. 736–744 | es_ES |
dc.description.references | L.D.P. Pugliese, F. Guerriero, D. Zorbas, T. Razafindralambo, Modelling the mobile target covering problem using flying drones. Optim. Lett. 10(5), 1021–1052 (2016) | es_ES |
dc.description.references | H. Karl, An overview of energy-efficiency techniques for mobile communication systems, Report of AG Mobikom WG7 (2003) | es_ES |
dc.description.references | L. Chiaraviglio, D. Ciullo, M. Meo, M.A. Marsan, I. Torino, Energy-aware UMTS access networks, ed: Citeseer (2008) | es_ES |
dc.description.references | S. Jung, Y. Jo, Y.-J. Kim, Flight time estimation for continuous surveillance missions using a multirotor UAV. Energies 12(5), 867 (2019) | es_ES |
dc.description.references | A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L.G. Giordano, A. Garcia-Rodriguez, J. Yuan, Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019) | es_ES |
dc.description.references | C. Lubritto, A. Petraglia, C. Vetromile, S. Curcuruto, M. Logorelli, G. Marsico, A. D’Onofrio, Energy and environmental aspects of mobile communication systems. Energy 36(2), 1109–1114 (2011) | es_ES |
dc.description.references | R. Balani, Energy consumption analysis for bluetooth, wifi and cellular networks, Online Httpnesl Ee Ucla Edufwdocumentsreports2007PowerAnalysis Pdf (2007) | es_ES |
dc.description.references | L. Zou, A. Javed, G.-M. Muntean, Smart mobile device power consumption measurement for video streaming in wireless environments: WiFi vs. LTE, in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (IEEE, 2017), pp. 1–6 | es_ES |
dc.description.references | M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M.S. Kaiser, M.R. Ahmed, O. Kaiwartya, A. James-Taylor, Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things. IEEE Int. Things J. 6(3), 4049–4062 (2018) | es_ES |
dc.description.references | F. Ullah, A.H. Abdullah, O. Kaiwartya, S. Kumar, M.M. Arshad, Medium access control (MAC) for wireless body area network (WBAN): superframe structure, multiple access technique, taxonomy, and challenges. Hum. Centric Comput. Inform. Sci. 7(1), 34 (2017) | es_ES |
dc.description.references | A. Sawalmeh, N.S. Othman, H. Shakhatreh, Efficient deployment of multi-UAVs in massively crowded events. Sensors 18(11), 3640 (2018) | es_ES |
dc.description.references | M.N. Ahmed, A.H. Abdullah, H. Chizari, O. Kaiwartya, F3TM: Flooding Factor based Trust Management Framework for secure data transmission in MANETs. J. King Saud Univ. Comput. Inform. Sci. 29(3), 269–280 (2017) | es_ES |
dc.description.references | B. Haponiuk. Drone Flight Time Calculator. https://omnicalculator.com/other/drone-flight-time | es_ES |
dc.description.references | K.N. Qureshi, A.H. Abdullah, O. Kaiwartya, F. Ullah, S. Iqbal, A. Altameem, Weighted link quality and forward progress coupled with modified RTS/CTS for beaconless packet forwarding protocol (B-PFP) in VANETs. Telecommun. Syst. 75(pages145–160), 2020 (2016) | es_ES |
dc.description.references | M. Prasad, Y.T. Liu, D.L. Li, C.T. Lin, R.R. Shah, O.P. Kaiwartya, A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017) | es_ES |
dc.description.references | A. Khasawneh, M.S.B.A. Latiff, O. Kaiwartya, H. Chizari, Next forwarding node selection in underwater wireless sensor networks (UWSNs): Techniques and challenges. Information 8(1), 3 (2017) | es_ES |