- -

Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in IoT-enabled fifth generation cellular networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in IoT-enabled fifth generation cellular networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Majeed, Saqib es_ES
dc.contributor.author Sohail, Adnan es_ES
dc.contributor.author Qureshi, Kashif Naseer es_ES
dc.contributor.author Kumar, Arvind es_ES
dc.contributor.author Iqbal, Saleem es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-11-03T10:38:44Z
dc.date.available 2022-11-03T10:38:44Z
dc.date.issued 2020-12-11 es_ES
dc.identifier.issn 1687-1472 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189096
dc.description.abstract [EN] Cellular networks based on new generation standards are the major enabler for Internet of things (IoT) communication. Narrowband-IoT and Long Term Evolution for Machines are the newest wide area network-based cellular technologies for IoT applications. The deployment of unmanned aerial vehicles (UAVs) has gained the popularity in cellular networks by using temporary ubiquitous coverage in the areas where the infrastructure-based networks are either not available or have vanished due to some disasters. The major challenge in such networks is the efficient UAVs deployment that covers maximum users and area with the minimum number of UAVs. The performance and sustainability of UAVs is largely dependent upon the available residual energy especially in mission planning. Although energy harvesting techniques and efficient storage units are available, but these have their own constraints and the limited onboard energy still severely hinders the practical realization of UAVs. This paper employs neglected parameters of UAVs energy consumption in order to get actual status of available energy and proposed a solution that more accurately estimates the UAVs operational airtime. The proposed model is evaluated in test bed and simulation environment where the results show the consideration of such explicit usage parameters achieves significant improvement in airtime estimation. es_ES
dc.description.sponsorship The research is funded by the Department of Computer Science, Iqra University, Islamabad Campus, Pakistan es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof EURASIP Journal on Wireless Communications and Networking es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy aware es_ES
dc.subject UAV es_ES
dc.subject UE es_ES
dc.subject Dynamic deployment es_ES
dc.subject Communicational energy es_ES
dc.subject Energy efficiency es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in IoT-enabled fifth generation cellular networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13638-020-01877-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integrada de Zonas Costeras - Institut d'Investigació per a la Gestió Integrada de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Majeed, S.; Sohail, A.; Qureshi, KN.; Kumar, A.; Iqbal, S.; Lloret, J. (2020). Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in IoT-enabled fifth generation cellular networks. EURASIP Journal on Wireless Communications and Networking. 2020(1):1-14. https://doi.org/10.1186/s13638-020-01877-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13638-020-01877-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2020 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\473213 es_ES
dc.contributor.funder Iqra University es_ES
dc.description.references K. Kumar, S. Kumar, O. Kaiwartya, A. Sikandar, R. Kharel, J.L. Mauri, Internet of unmanned aerial vehicles: QoS provisioning in aerial ad-hoc networks. Sensors 20(11), 3160 (2020) es_ES
dc.description.references M. Marchese, A. Moheddine, F. Patrone, IoT and UAV integration in 5G hybrid terrestrial-satellite networks. Sensors 19(17), 3704 (2019) es_ES
dc.description.references K. Kumar, S. Kumar, O. Kaiwartya, P.K. Kashyap, J. Lloret, H. Song, Drone assisted flying ad-hoc networks: mobility and service oriented modeling using neuro-fuzzy. Ad Hoc Netw. 102242 (2020) es_ES
dc.description.references X. Li, Deployment of drone base stations for cellular communication without apriori user distribution information, in 2018 37th Chinese Control Conference (CCC) (IEEE, 2018), pp. 7274–7281 es_ES
dc.description.references J.P. Pereira, I.M. Lopes, Next generation access networks: infrastructure sharing, in World Conference on Information Systems and Technologies (Springer, 2017), pp. 244–252 es_ES
dc.description.references A. Mukherjee, N. Dey, N. Kausar, A.S. Ashour, R. Taiar, A.E. Hassanien, A disaster management specific mobility model for flying ad-hoc network, in Emergency and Disaster Management: Concepts, Methodologies, Tools, and Applications (IGI Global, 2019), pp. 279–311 es_ES
dc.description.references K.N. Qureshi, A.H. Abdullah, O. Kaiwartya, S. Iqbal, R.A. Butt, F. Bashir, A dynamic congestion control scheme for safety applications in vehicular ad hoc networks. Comput. Electr. Eng. 72, 774–788 (2018) es_ES
dc.description.references B. Perabathini, K. Tummuri, A. Agrawal, V.S. Varma, Efficient 3D placement of UAVs with QoS assurance in ad hoc wireless networks, in 2019 28th International Conference on Computer Communication and Networks (ICCCN) (IEEE, 2019), pp. 1–6 es_ES
dc.description.references J. Lu, S. Wan, X. Chen, P. Fan, Energy-efficient 3D UAV-BS placement versus mobile users' density and circuit power, in 2017 IEEE Globecom Workshops (GC Wkshps) (IEEE, 2017), pp. 1–6 es_ES
dc.description.references R. Yadav, W. Zhang, O. Kaiwartya, P.R. Singh, I.A. Elgendy, Y.C. Tian, Adaptive energy-aware algorithms for minimizing energy consumption and SLA violation in cloud computing. IEEE Access 6, 55923–55936 (2018) es_ES
dc.description.references C.-C. Lai, C.-T. Chen, L.-C. Wang, On-demand density-aware uav base station 3d placement for arbitrarily distributed users with guaranteed data rates. IEEE Wirel. Commun. Lett. 8(3), 913–916 (2019) es_ES
dc.description.references S. Iqbal, K.N. Qureshi, N. Kanwal, G. Jeon, Collaborative energy efficient zone‐based routing protocol for multihop Internet of Things, Transactions on Emerging Telecommunications Technologies (2020), p. e3885 es_ES
dc.description.references F. Aadil, A. Raza, M. Khan, M. Maqsood, I. Mehmood, S. Rho, Energy aware cluster-based routing in flying ad-hoc networks. Sensors 18(5), 1413 (2018) es_ES
dc.description.references Y. Chen, D. Baek, A. Bocca, A. Macii, E. Macii, M. Poncino, A case for a battery-aware model of drone energy consumption, in 2018 IEEE International Telecommunications Energy Conference (INTELEC) (IEEE, 2018), pp. 1–8 es_ES
dc.description.references A.A.A. Ateya, A. Muthanna, R. Kirichek, M. Hammoudeh, A. Koucheryavy, Energy-and latency-aware hybrid offloading algorithm for UAVs. IEEE Access 7, 37587–37600 (2019) es_ES
dc.description.references A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez, J. Yuan, Survey on uav cellular communications: practical aspects, standardization advancements, regulation, and security challenges, IEEE Communications Surveys & Tutorials (2019) es_ES
dc.description.references L. Wang, B. Hu, S. Chen, Energy efficient placement of a drone base station for minimum required transmit power, IEEE Wireless Communications Letters (2018) es_ES
dc.description.references T.M. Cabreira, C. Di Franco, P.R. Ferreira, G.C. Buttazzo, Energy-aware spiral coverage path planning for uav photogrammetric applications. IEEE Robot. Automat. Lett. 3(4), 3662–3668 (2018) es_ES
dc.description.references M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016) es_ES
dc.description.references M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs. IEEE Trans. Wirel. Commun. 15(6), 3949–3963 (2016) es_ES
dc.description.references K. Li, W. Ni, X. Wang, R.P. Liu, S.S. Kanhere, S. Jha, Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE Trans. Mob. Comput. 15(6), 1377–1386 (2015) es_ES
dc.description.references A.E. Abdulla, Z.M. Fadlullah, H. Nishiyama, N. Kato, F. Ono, R. Miura, An optimal data collection technique for improved utility in UAS-aided networks, in IEEE INFOCOM 2014-IEEE Conference on Computer Communications (IEEE, 2014), pp. 736–744 es_ES
dc.description.references L.D.P. Pugliese, F. Guerriero, D. Zorbas, T. Razafindralambo, Modelling the mobile target covering problem using flying drones. Optim. Lett. 10(5), 1021–1052 (2016) es_ES
dc.description.references H. Karl, An overview of energy-efficiency techniques for mobile communication systems, Report of AG Mobikom WG7 (2003) es_ES
dc.description.references L. Chiaraviglio, D. Ciullo, M. Meo, M.A. Marsan, I. Torino, Energy-aware UMTS access networks, ed: Citeseer (2008) es_ES
dc.description.references S. Jung, Y. Jo, Y.-J. Kim, Flight time estimation for continuous surveillance missions using a multirotor UAV. Energies 12(5), 867 (2019) es_ES
dc.description.references A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L.G. Giordano, A. Garcia-Rodriguez, J. Yuan, Survey on UAV cellular communications: practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019) es_ES
dc.description.references C. Lubritto, A. Petraglia, C. Vetromile, S. Curcuruto, M. Logorelli, G. Marsico, A. D’Onofrio, Energy and environmental aspects of mobile communication systems. Energy 36(2), 1109–1114 (2011) es_ES
dc.description.references R. Balani, Energy consumption analysis for bluetooth, wifi and cellular networks, Online Httpnesl Ee Ucla Edufwdocumentsreports2007PowerAnalysis Pdf (2007) es_ES
dc.description.references L. Zou, A. Javed, G.-M. Muntean, Smart mobile device power consumption measurement for video streaming in wireless environments: WiFi vs. LTE, in 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (IEEE, 2017), pp. 1–6 es_ES
dc.description.references M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M.S. Kaiser, M.R. Ahmed, O. Kaiwartya, A. James-Taylor, Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things. IEEE Int. Things J. 6(3), 4049–4062 (2018) es_ES
dc.description.references F. Ullah, A.H. Abdullah, O. Kaiwartya, S. Kumar, M.M. Arshad, Medium access control (MAC) for wireless body area network (WBAN): superframe structure, multiple access technique, taxonomy, and challenges. Hum. Centric Comput. Inform. Sci. 7(1), 34 (2017) es_ES
dc.description.references A. Sawalmeh, N.S. Othman, H. Shakhatreh, Efficient deployment of multi-UAVs in massively crowded events. Sensors 18(11), 3640 (2018) es_ES
dc.description.references M.N. Ahmed, A.H. Abdullah, H. Chizari, O. Kaiwartya, F3TM: Flooding Factor based Trust Management Framework for secure data transmission in MANETs. J. King Saud Univ. Comput. Inform. Sci. 29(3), 269–280 (2017) es_ES
dc.description.references B. Haponiuk. Drone Flight Time Calculator. https://omnicalculator.com/other/drone-flight-time es_ES
dc.description.references K.N. Qureshi, A.H. Abdullah, O. Kaiwartya, F. Ullah, S. Iqbal, A. Altameem, Weighted link quality and forward progress coupled with modified RTS/CTS for beaconless packet forwarding protocol (B-PFP) in VANETs. Telecommun. Syst. 75(pages145–160), 2020 (2016) es_ES
dc.description.references M. Prasad, Y.T. Liu, D.L. Li, C.T. Lin, R.R. Shah, O.P. Kaiwartya, A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017) es_ES
dc.description.references A. Khasawneh, M.S.B.A. Latiff, O. Kaiwartya, H. Chizari, Next forwarding node selection in underwater wireless sensor networks (UWSNs): Techniques and challenges. Information 8(1), 3 (2017) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem